的有机物妨碍氢氟酸溶剂对预制棒表面的浸蚀作用。在使用有机溶剂清洗和随后的酸蚀处理中,若采用超声波搅动清洗和酸蚀,利用溶液的涡旋作为驱动力,效果会更佳。
预制棒表面酸蚀处理不当,也会起到负面作用:
(1)氢氟酸酸蚀虽然能除去表面异物和较大的表面伤痕;但同时会导致新的小腐蚀坑的形成;
(2)过量的腐蚀会引起局部折射率变化,造成“微型粗糙”;
(3)在不会引起断裂部分,含有Vikers凹痕的SiO2预制棒,即使短时浸蚀,也可使其强度明显降低。
基于上述原因,单独酸蚀处理,对提高光纤强度效果难以确定,所以,在光纤预制棒表面处理中,酸蚀处理不宜单独采用。
火焰抛光法也是一种常规的强化玻璃表面的方法。此方法可以显著地提高光纤的强度。其基本原理是:利用氢氧火焰(或电阻加热炉、或等离子火焰、或激光)抛光预制棒表面,使表面软化,促使预制棒表面平滑化,从而愈合或“填平”微裂纹。这种工艺对预制棒的表面不平整>10um,裂纹深度>0.1um的表面缺陷,只要在1530°C ~2300°C温度范围内,抛光2~5次,即可很好的除去所有的缺陷,并使光纤的最低强度保持在3.5GPa(500kpsi)以上。表5-2-5给出一种我国某光纤预制棒生产公司实际利用氢氧火焰进行火焰抛光法的预制棒研磨工艺参数。
该工艺操作主要有三个步骤:
1.接尾棒
(1)将母棒和接尾棒距离调至2~3mm,喷灯台靠近母棒一侧,高温烧烤至接头呈乳白色融态,一般需5分钟左右,推进母棒使其和接尾棒连接;
(2)移动喷灯台测量母棒直径,同时用卷尺测量母棒的有效长度;
2.研磨母棒
氢氧火焰温度达到2300°C时,开始研磨母棒,以40rpm的转速转动玻璃车床,并以30 mm/min的速度移动喷灯,研磨2次可达到最低强度要求,若增加研磨次数,会使强度增加;
3.分离尾棒
尾轴台向右移动,拉细连接部位,至到直径小于5mm时,用火焰烧断即完成辅助接尾棒的分离,之后,将喷灯台匀速向母棒侧移动约为150mm~200mm,以消除母棒上产生的白雾;在接缝面侧365mm处找出拉丝安装线,并标刻“0”标志。
为避免预制棒被污染,抛光处理过程应在一个清洁的小房间内进行,房间的洁净度应在1000级以上。也可以在预制棒生产现场进行。
为防止已处理好的预制棒被“再次污染”,最好将预制棒立刻拉丝。若不能立即拉丝,则应将处理好的预制棒悬挂在空气过滤器的正前面或将其存放于特别的无尘密封容器中,以便在暂时存放期间和在运往拉制场所时,表面不致被损伤、污染。根据大量实验,业内专家建议,为取得良好的效果,酸蚀到抛光,抛光到拉丝之间的时间间隔以0.5小时最好。
5.2.8光纤预制棒质量检测
光纤预制棒质量的好坏对光纤光缆的质量起着决定性的作用,对预制棒质量的检测主要有三个方面:(1)预制棒内存的各种缺陷检验;(2)预制棒几何参数的检测;(3)折射率分布测试。
预制棒缺陷是指沉积层中的气泡、裂纹以及沉积层结构偏差与沿轴向不均匀分布等因素问题,它反应出预制棒的沉积质量。可利用He—Ne激光扫描装置进行检验。
5.3 SiO2光纤拉丝及一次涂覆工艺
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库光纤光缆制造工艺及设备(18)在线全文阅读。
相关推荐: