专题:综合题;空间位置关系与距离.
分析:蛋槽的边长是原来硬纸板的对角线长度的一半,为2,蛋槽立起来的小三角形部分高度是1,鸡蛋的半径为2,直径为4,大于折好的蛋巢边长2,由此能求出鸡蛋中心(球心)与蛋巢底面的距离. 解答: 解:蛋槽的边长是原来硬纸板的对角线长度的一半,为2, 蛋槽立起来的小三角形部分高度是1,
鸡蛋的半径为2,直径为4,大于折好的蛋巢边长2,四个三角形的顶点所在的平面在鸡蛋表面所截取的小圆直径就是蛋槽的边长2,
根据图示,AB段由三角形AB求出得:AB=,
AE=AB+BE=
+1,
∴鸡蛋中心(球心)与蛋巢底面的距离为+1. 故选:A.
点评:本题考查点、线、面间距离的计算,解题时要认真审题,注意挖掘题设中的隐含条件,合理地化空间问题为平面问题,注意数形结合法的合理运用. 8.C
考点:直线与平面垂直的性质;球的体积和表面积. 专题:球.
分析:设球的半径为R,根据题意知由与球心距离为R的平面截球所得的截面圆的面积是π,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积.
解答: 解:设球的半径为R,∵AH:HB=1:2,∴平面α与球心的距离为R, ∵α截球O所得截面的面积为π, ∴d=R时,r=1,
第11页,总21页
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库高中数学立体几何总复习文科单元检测卷(11)在线全文阅读。
相关推荐: