好吧,学弟学妹们,我能帮上的就这么点了
3 图像增强的算法分析
在图像处理中,图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着非常至关重要的作用。
3.1 直方图均衡化
直方图均衡化方法是图像增强中最常用,最重要的方法之一。直方图均衡化是把原图像的直方图通过灰度变换函数修正为灰度均匀分布的直方图,然后按均衡直方图修正原图像。它以概率论为基础,运用灰度点运算来实现,从而达到图像增强的目的。它的变换函数取决于图像灰度直方图的累积分布函数。就是把一已知灰度概率分布的图像,经过一种变换,使之演变成一幅具有均匀概率分布的新图像。有些图像在低值灰度区间上频率较大,使得图像中较暗区域中的细节部分看不清楚,这是可以将图像的灰度范围分开,并且让灰度频率较小的灰度级变大。当图像的直方图为一均匀分布时,图像的信息熵最大,此时图像包含的信息量最大,图像看起来就显得清晰[5]。
原始图的灰度范围大约是110到250之间,灰度分布的范围比较狭窄,所以整体上看对比度比较差,而直方图均衡化后,灰度几乎是均匀的分布在0到255的范围内,图像明暗分明,对比度很大,图像比较清晰明亮,很好的改善了原始图的视觉效果。
优势:能够使得处理后图像的概率密度函数近似服从均匀分布,其结果扩张了像素值的动态范围,是一种常用的图像增强算法。
不足:不能抑制噪声。
3.2 图像二值化
图像的二值化处理就是将图像上的像素点的灰度值设置为0或255,也就是讲整个图像呈现出明显的黑白效果。
将256个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局部特征的二值化图像。在数字图像处理中,二值图像占有非常重要的地位,首先,图像的二值化有利于图像的进一步处理,使图像变得简单,而且数据量减小,能凸显出感兴趣的目标的轮廓。其次,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库图像增强算法设计与实现(9)在线全文阅读。
相关推荐: