77范文网 - 专业文章范例文档资料分享平台

时间序列表示进展及比较研究时间序列挖掘建模环境(5)

来源:网络收集 时间:2021-06-01 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

时间序列表示是时间序列挖掘的一个基础和关键问题。对当前出现的各种典型的时间序列表示方法进行了综述,对各自的特点从多个角度进行了比较研究。结果说明,大部分时间序列表示方法将时间序列降维,且都与应用领域紧密相关,在实际构建系统时仍需对各种表示方法按照实际需求进

参考文献

[1] Agrawal, R., Faloutsos, C. and Swami, A. Efficient similarity search in sequence in

sequence databases. In: Proc. 4th International Conference on Foundations of Data Organization and Algorithms, Chicago, Illinois, USA, 1993. 69~84.

[2] Agrawal, R., Psaila, E. L. Wimmers and M. Zait. Querying shapes of histories. In Proc.

of the 21st International Conference on Very Large Databases(VLDB), 1995. 502~514.

[3] Agrawal, R., K. I. Lin, H.S. Sawhney, et al. Fast similarity search in the presence of

noise, scaling , and translation in time-series databases. In: Proc. of the 21st International Conference on Very Large Databases(VLDB), 1995. 490~500.

[4] Chakrabarti, K., Ortega-Binderberger. M. Porkaew, et al. Similar shape retrieval in

MARS. In: Proc. of IEEE International Conference on Multimedia and Expo.2000.

[5] Chan, K. and Fu, A. W. Efficient time series matching by wavelets. In: Proc. 15th IEEE

International Conference on Data Engineering (ICDE). Sydney, Australia, 1999.126~133.

[6] Chang-Shing Perng, Haixun Wang, and Sylvia R. Zhang, et al. Landmarks: A New

Model for Similarity-Based Pattern Querying in Time Series Databases. In: Proc. of 16th International Conference of Data Engineering(ICDE), San Diego, USA.2000.

[7] Faloutsos, C., Ranganathan, M., Manolopoulos, Y. Fast subsequence matching in

time-series databases. In: Proc. of ACM SIGMOD Conference, Mineapolis, 1994. 419~429.

[8] H. Shatkay, H. and S. Zdonik. Approximate queries and representations for large data

sequences. In: Proc. 12th International Conference on Data Engineering(ICDE), 1996. 536~545.

[9] Li Quanzhong, Vega Lopez I.F., Moon B. Skyline Index for Time Series Data. IEEE

Trans. on Knowledge and Data Mining, 16(6), 2004. 669~684.

[10] Li Wei, Kumar N., Lolla V, et al. A Practical Tool for Visualizing and Data Mining

Medical Time Series. In: Computer-Based Medical Systems, 2005.

[11] Jessica Lin, Keogh E. Londardi S, et al. A Symbolic Representation of Time Series, with

Implications for Streaming Algorithms.In: Proc. of the 8th ACM SIGMOD workshop on Research(DMKD), San Diego, CA, USA. 2003.

[12] Jessica Lin, Keogh E, Londardi S. Visualizing and Discovering Non-Trivial Patterns in

Large Time Series Databases.In: Information Visualization, 2005.

[13] Kamel, I. and Faloutsos, C. Hilbert R-tree: An improved R-tree using fractals. In: Proc.

Very Large Database (VLDB), 1994. 500~509.

[14] Keogh E. Exact indexing of dynamic time warping. In: Proc. of 28th International

Conference on Very Large Databases Conference(VLDB), Hong Kong, China.2002. 406~417.

[15] Keogh E., Kasetty, S. On the need for time series data mining benchmarks: a survey and

empirical demonstration. In: 8th ACM SIGKDD International Conf. on Knowledge Discovery and Data Mining, Edmonton, Canada, 2002. 102~111.

[16] Keogh E. Pazzani, M. A simple dimensionality reduction technique for fast similarity

search in large time series databases. In: 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Kyoto, Japan,2000. 122~133.

[17] Keogh E. Chakrabarti K, Pazzani M. Locally adaptive dimensionality reduction for

indexing large time series databases. In: Proc. of ACM SIGMOD Conference on Management of Data, 2001. 151~162.

[18] Keogh E. Similarity Search in Massive Time Series Databases: [Ph.D. Thesis].

University of California, Irvine. 2002.(Importance)

[19] Keogh E. Lonardi S. Ratanamahatana A.C. Towards Parameter-Free Data Mining. In:

Proc. of KDD, Seattle, WA. USA. 2004.

[20] Keogh E. Selina Chu, David Hart, et al. An Online Algorithm for Segmenting Time

Series. In: Proc. of IEEE International Conference on Data Mining(ICDM), 2001.

[21] Kevin B. Pratt and Eugene Fink. Search for Patterns in Compressed Time Series. In: International Journal of Image and Graphics. 2(1), 2002. 89~106.

- 5 -

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库时间序列表示进展及比较研究时间序列挖掘建模环境(5)在线全文阅读。

时间序列表示进展及比较研究时间序列挖掘建模环境(5).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/jiaoyu/1229847.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: