(3)应保证抓取物体在手指内的夹持精度,应保证每个被抓取的物体在手指内都有准确的相对位置
(4)要求结构紧凑、重量轻、效率高,在保证自身刚度、强度的前提下,尽可能使结构紧凑、重量轻,以便于减轻手臂的负载。
3.1.2末端执行器的设计
a.驱动方式的选择
机械中提供驱动的装置和方式很多,如电机驱动、液压驱动、气压驱动等,各种驱动方式有其自身的特点,在工业机器人中液压和气压驱动应用很广泛,有些机器人则同时采用多种驱动方式,这都视不同机器人的特点和要求所定。比较这些驱动方式的特点,丛中选择适合移动机械手的驱动方式。
电机驱动机械手可以避免电能变为压力能的中间环节,效率比液压和气压驱动要高。电机系统将电动机、测速机、编码器以及制动器组装在依次加工的课题里,使得整个电机系统体积小,可靠性和通用性也得到很大的提高。另外,电动机根据运行距离及电机的脉冲当量算出脉冲数,将数据输入计算机,可以达到非常高的位姿准确度。而液压和气压驱动系统组成机构烦琐,维护不方便,液压源和气压源装置体积大,对于移动机器人来说也是个无法实现的问题,对于移动机器人操作机械手臂所要求的位置精度,液压和气压驱动也很难满足。
综上所述,本文选择电机驱动为机械手的驱动方式。 b.传动方式的选择
传动装置是一种实现能量传递和兼有其它作用的装置,它的主要作用有:能量的分配与传递;运动形式的改变;运动速度的改变。机械传动是主要的传动装置,常用的有带传动、链传动、齿轮传动和蜗杆传动等
根据机械手结构的实际情况选择齿轮传动。齿轮传动是机械传动中应用最广泛的一类传动。它传动效率高,在正常的润滑条件下效率可达99%以上;传动比恒定,齿轮传动具有不变的瞬时传动比,所以可应用到高速传动中;结构紧凑,同等条件下其所占空间小;工作可靠、寿命长。
手指的设计将采用平移运动的方式来夹持物体,这里将采用左右螺旋轴和齿轮副一起作为传动机构来完成末端机构所要求达到的功能。采用这两种结构使整个末端执行器体积小、质量轻。
c.手指的设计
不同的手指数量可以完成的动作以及动作复杂程度都不同,可以根据机械手
21
必须完成的动作来确定机械手所需的最少手指数。一个手指能推、滚或滑动小物体,还可以用力操作开关等;两个手指除具有一个手指完成的功能外,它还能抓住物体并可精确的控制物体的位置和取向;三个手指除了能完成两个手指可完成的功能外,它还有在手中反复抓握物体的功能,如将物体抛入空中并在新的位置抓住物体;多个手指则具有更大的灵活性,如可以抓住和操作多个物体。对于本文的移动机器人,只需能够抓住物体,控制物体的位置和取向,那么两个手指就能满足此工作要求,所以在结构上将采用两指结构。从而两手指相对于末端执行器在左右螺旋轴的带动下做平移运动,达到开合作用。
工业机器人应用的双指机械式夹持器按其手爪的运动方式可分为回转型和平移型。如图 3.2和3.3 是两种典型的机械夹持器结构。本文选择平移型夹持器的结构,它与前者相比具有结构简单、控制容易的优点。
1.支架 2.杆 3.圆柱销 4.杠杆 1.电动机 2.丝杠 3.导轨 4.钳爪杆
图3.2杠杆式回转型夹持器 图3.2左右旋丝杠原理图
经过以上的研究讨论从而设计末端执行器结构如图3.4所示。末端执行器机械结构采用超硬铝合金材料,在保证一定的刚度的同时又降低了整体的重量。手指伸出长度为 50mm,开合范围 4-44mm。它的内部结构是这样的,驱动电机经齿轮1传动齿轮2,驱动左右螺旋轴3使手指6、7进行开合运动。导向轴引导并固定手指的运动轨迹。
22
1.电机 2.齿轮 3.左右螺旋轴 4.导向轴 5.齿轮 6.夹持器右指 7.夹持器左 图3.4 末端执行器结构图
手指形状如图2.12所示,前段平行处可以夹持形状规则(与手指接触面为平面) 的物体,后段为菱形形状,可以夹持圆形和不规则形状的物体。这种设计可 以更好的使机器人完成工作。
3.1.3电机的选型与计算
本文设计要求夹持的物体重为 m=300g,设螺纹为 M8,其中径 r=3.6mm,螺距 P=1mm,当量摩擦系数 f=0.1,Q为轴向载荷,M为螺纹驱动力矩。手指材料为铝合金,表3.1列出了铝合金与常用材料的磨擦系数,
表3.1 主要工程材料摩擦系数
摩擦副材料 铝合金 黄 铜 青 铜 钢 胶 木 钢 纸 树 脂 硬橡胶 石 板 静摩擦系数 0.27 0.22 0.3 0.34 0.32 0.28 0.25 0.26
从表3.1可以看出铝合金与不同材料的静摩擦系数趋近于0.3,所以取被抓物体和末端执行器手指之间的静摩擦系数??0.3,则:
(3-1)G0.3?9.8Q???0.3?9.8N
23
螺纹增力比
ip?Q1 (3-2) ?'Mr?tan?????式中 ?'——当量摩擦角,?'= ?rctanf;
?——螺纹升角,?= ?rctan1
2?r带入数据,得ip?1915.7, 得
M?Q ?5.12mN?m (3-3)
ip选用齿轮传动比 n=1:1,忽略齿轮传动摩擦及轴承滚动摩擦力矩,根据上述 计算,我们选择了北京和利时电机公司生产的 28BYG250C-SAFSM-L007 型步进电机,它的保持转矩为 90mN?m,满足设计要求。
3.2机械手臂杆件的设计
本文采用铝合金材料设计成薄壁件,一方面保证机械臂的刚度,另一方面可减小机械臂的重量,减小对对基座关节电机的载荷,并且提高了机械臂的动态响应。
3.2.1腕部结构设计
手腕部件设置于手部和臂部之间,它的作用主要是在臂部运动的基础上进一步改变或调整手部在空间的位置,以扩大机械手的动作范围,并使机械手变的更灵巧,适应性更强。
本文设计的手腕结构是回转结构,它可在空间内360?旋转,进而扩大机械手的工作范围。腕部采用伺服电机驱动,通过电机伸出轴和末端执行器连接,借助轴承来达到力矩的传递。通过轴承座将力传到壳体上,使电机轴只能传递力矩而不受其它力的作用。其结构如图3.5所示。
24
1.末端执行器 2.手腕连接件 3.轴承 4.轴承座 5.电机6.壳体 7.杆件A 图3.5 腕部结构图
3.2.2臂部结构设计
手臂部分是机械手的主要部件。它的作用是支承腕部和手部,并带动它们做空间运动。臂部运动的目的是把手部送到空间运动范围内的任意一点。如果改变手部的姿态(方位),则用腕部的自由度加以实现。
臂部设计的基本要求:
(1)承载能力大、刚度好、自重轻
臂部通常即受弯曲(而且不是一个方向的弯曲),也受扭转,应选用抗弯和抗扭刚度较高的截面形状。所以臂部做成空心的,这可以减轻自重,也提高了刚性,其内部可以布置各种机构,这样就是结构紧凑、外型整齐。
(2)臂部运动速度要高,惯性要小
在一般情况下,手臂的移动要求匀速运动,但在手臂的启动和终止瞬间,运动是变化的,为了减少冲击,要求启动时间的加速度和终止前减速度不能太大,否则引起冲击和震动。
(3)臂动作应灵活。 (4)位置精度要高。
本文设计的手臂是摆动关节,杆件B是为装配舵机设计成如图3.6所示结构,此时舵机自身也参与了杆件的组成,这样既节约了材料和设计空间,又增加了机械臂的刚度。杆件C是为了支撑舵机轴而设计,它与舵机的配合形成了机械臂的摆动关节,关节处无轴承配合,而是通过舵机摇臂和舵机主体之间的相对主动来实现关节驱动的。
25
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库轮式移动机器人结构设计论文(6)在线全文阅读。
相关推荐: