车轮内部,既增大车轮与地面的接触面积,又缩短了整个结构的轴向距离。为了保持轮子受力平衡使整个机构可以平稳运动,将轮子设计为两个一组来实现。
图2.2 旋转部分结构图
采用了一个深沟球轴承作为径向支承,一方面避免了车轮对电机产生弯矩;另一方面保证了车轮的刚度。轴承外圈与车轮内表面配合,由于内圈并不能与电机直接配合,设计了一个电机壳结构,作电机和轴承的连接。
图2.3 旋转部分示意图
11
图2.4 旋转部分机构图
车轮旋转部分的具体结构分为五个部分:
(1)两个轴承由弹性挡圈和电机壳轴肩轴向定位;通过电机壳外表面径向定位通过电机轴外表面径向定位。此外,此处选用深沟球轴承作为支撑.深沟球轴承主要承载径向载荷,同时也可以承载小的轴向载荷。选用它就可以达到设计的要求,而且深沟球轴承经济性好,方便购买。而作为径向支撑,它主要避免了车轮对电机产生弯矩。
(2)电机预装在电机壳上,依靠电机壳凸缘轴向定位;但径向定位不能利用电机定位止口定位,只能采用车轮调整电机轴的同心完成径向定位。
(3)车轮依靠轴承的外圈定位,然后再通过车轮自有联轴器与电机轴联接。这个过程也是调整电机轴同心,然后从车轮侧面的预留安装孔将电机紧固在电机壳上。
(4)整个车轮分为两部分组合而成。一个是带有轴径的车轮,另一个是不带轴径的轮子,两者相配合使用组成一组完整的车轮。而车轮轴径与车体支撑件以滚动摩擦的形式配合使用,并且作为两车轮的轴向定位件。车轮最终的固定是通过外侧的螺钉来顶紧挡板实现的。具体结构如图2.4所示。
(5)整个旋转部分结构设计完成,但它必须与转向机构连接起来才能实现全方位移动。后一小节转向机构的设计中设计有转向轴,为了使转动部分和转向部分的转向轴连接以实现全方位运动,此处设计了类似于半圆的固定件。如图2.5所示。使用是采用两个配合来固定住旋转部分,通过四个螺栓的连接来实现和转向轴的连接,从而使转向机构和转动机构连为一体,最终实现全方位移动。
12
图2.5 固定件结构
至此,全方位移动机器人的车轮旋转机构设计完毕。
2.3.2 移动机器人转向机构设计
转向部分主要由转向轴、轴承、基座、转向电机以及转向连接件组成转向机构设计的基本路线是从上而下。如图2.6,图2.7所示。
图2.6 转向部分示意图 图2.7 转向部分结构图
(1)转向轴
转向轴分两部分,呈T型,一端采用阶梯轴的形式,便于与基座联接;另一端与车轮部分联接,设计成圆柱形以保证足够的强度和良好的工艺性。同时两部分轴互相配合,可以伸缩以便转向时车轮轴的位移变化。转向轴主要作用就是通过与转向电机的连接起到转向的作用,主要受的是径向力,而受到的轴向力很小。如图2.7所示,转向轴受到向上的轴向力时,轴向力通过轴肩传到下方轴承内圈,再传到套筒,然后传到上方轴承的内圈,再通过滚珠传递到轴承外圈,而轴向力进一步的传递到端盖和箱体,从而将轴向力转移到整个车体上,因为,箱体连接在车体上。转向轴受到向下的轴向力时,首先是靠弹性挡圈传递轴向力,再通过一系列传递最终将轴向力转移到车体上。所以说,转轴的工作是可靠的。 (2)转向轴与基座联接:
转向轴相对于基座来说只有一个自由度,形成的是转动副,转向轴在机器人移动过程中承受径向力和比较大的轴向力,适合这种要求的常用轴承有圆锥滚子轴承。轴承采用套筒隔开的两端支撑结构,这样设计可以保证转向轴在转向的过
13
程中不发生摇摆,保证转向的精度并且可以减小对转向相关零部件的磨损。一对轴承用套筒隔开后,轴承内圈由轴肩和轴用弹性挡圈固定。两轴承外圈与基座座孔和轴承端盖连接。
(3)转向电机轴和转向轴的联接
两轴的连接一般选用联轴器。联轴器主要用来联接轴与轴(或联接轴与其它回转件)以传递运动和转矩,有时也用作安全装置。本文中没用选用标准的联轴器,因为标准的联轴器整体尺寸过大,占用空间大,且不利于安装,不符合设计要求。同时,由于所要连接的两轴径大小确定本文自行设计了一个联轴器。其结构如图2.8所示。
图2.8 联轴器
由于轴仅受到转矩的作用,而轴向力很小,所以两轴都采用平键来周向固定,以达到固定和连接两轴的目的。 (4)转向驱动电机与基座的联接
当转向轴与基座构成转动副以后,只需要用电机来驱动转向轴即可实现车轮的转向。将电机固定在基座上需要一个连接件,连接件设计过程中考虑了两种模型:整体式和剖分式,如图2.9和2.10所示。整体式装配时定心性好,但必须侧面开口,这样容易导致车轮转向精度不够,且不利于防尘,剖分式定心性稍差一点,可以组合成封闭结构,具有可靠的刚度,防尘,拆卸方便。因此,选用剖分式结构。
14
图2.9 整体式 图2.10剖分式
(5)箱体的设计与固定
如图2.11所示为箱体结构的示意图。它通过左右两侧对称的呈L型的矩形臂用8个螺栓固定于车体前后两侧。由于箱体是通过螺钉和机座连接的,从而可以把它和机座以及转向电机视为一体。再者,箱体内部是放置轴承,并固定轴承的,所以设计了如图中所示的双臂。这种设计可以将转向机构的整体重量通过箱
图2.11 箱体示意图
体的两臂传到车体上,进而施于整个重量施轮子。那么转轴的受力将大大的减小。而且这样设计拆卸方便,利于维修。采用对称结构固定于空间内,有利于稳定整个转向机构,并提高整个全方位移动机构的性能。 至此,整个全方位移动机构机械本体设计完毕。
2.3.3 电机的选型与计算
a.电机性能的比较
在机器人的驱动器一般采用以下几种电机:直流电机、步进电机和舵机。几种电机有关参数进行如表 2.1 所示。
表2.1 几种电机比较
电机类型 优 点 缺 点
15
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库轮式移动机器人结构设计论文(3)在线全文阅读。
相关推荐: