(7) y?e?xx,求dy 解:∵y'=-2xsinx+2xe
1x?1?x2 ∴dy=(2xe?x21-2x sinx)dx
ny?sinx?sinnx,求y? 解:∵y'=nsinn-1x+ncosnx∴dy=n(nsinn-1+ cosnx)dx (8)
122?yy?ln(x?1?x)x?1?x(9) ,求 解:∵y'=
(1?2x21?x2=1?x2 ∴
)1dy?1dx21?x
y?2(10)
cot1x?1?3x2?2xxy?2xot?1xx112?x16?2111?31?5cot212xy??2csc?2ln?x2?x6x26x,求y? 解:
6、下列各方程中y是x的隐函数,试求y?或dy
22x?y?xy?3x?1,求dy (1)
y?2x?3解:方程两边对x求导得2x+2yy'-y-xy'+3=0 (2y-x)y'=y-2x-3 y'=2y?x y?2x?3dx2y?x∴dy=
xysin(x?y)?e?4x,求y? (2)
解:方程两边对x求导得:Cos(x+y)·(1+y')+exy(y+xy')=4 [cos(x+y)+xexy]y'=4-cos(x+y)-yexy
4?cos(x?y)?yexyxycos(x?y)?xey'=
7. 求下列函数的二阶导数:
2y?ln(1?x),求y?? (1)
12x2??(1?x)?21?X2 解:∵y'=1?x1(1?X2)?2X?2X2(1?X2)2XY???()??2221?X(1?X2)2(1?X) =
y?1?xx,求y??及y??(1) 解:
y??(?321x?x(2)
1)??(x?x)??xx=2?1212?321?x2?12
y???(?1x2?32?1x2?12)?3x=4?52?1x4
y??(1)?31??144
??21??01???2?0?1?1?2?1?1?0??12??53??10??5?0?3?15?1?3?0??35??=?? ???=?8、计算.(1)??02??11??0?1?2?00?1?2?0??00??0?3??00??0?1?3?00?1?3?0??00??=?? ???=?(2)??3??0???1254?????1????2?=??1?3?2?0?5?(?1)?4?2?=?0? (3)
45?23???124??245??7197??2?1???122??143???610??7120???1120???????????1?32??0?4?7?????3?2?14?? ???23?1????3?27??=?(4)?7?5??5152??7?219?4?7?612?0??112?00?????0?3?4?2?7?7??=???3?2?14?? =??23?1??123??,B??112?A??111???????0?11???011??,求AB。 9、设矩阵:
23?1解:
?A?110?13?111(1)?(2)0?2210?1212331?0?2210011233?2B?112?02011?2
?AB?A?B?0
?124??A??2?1????110??,确定?的值,使r(A)最小。 10、设矩阵:
?1?124??2?1???7?4???1?110????解:A=
2??1124??0?0??要使r(A)最小。
719??????此时r(A)?224只需4
?2?532?5?854A???1?742??4?11211、求矩阵1?3??0??3?的秩。
24231??2?532?5?8543?????4?1123???3??00001?3??3??0?
?2?5331??2?53?5?8543?(2)?(2)?5?85????1?7420???4?11???4?1123??4?11A=?∴r(A)=3
12、求下列阵的逆矩阵:
?1?1?32???3?A???301????1?1??1?1?解:[A?1]=?(1))
?3012100??1?32100??0?97310?1010???????1001???0?4310?1??
?1?32100??100113??113????010237??237???0?97310???????001349????001349?? ∴A-1=??349?? ?30???13?6?3100??1001??13?6?3???4?2?1010???010?2?7?1???4?2?1?????????211001?12?11??2??0010? ?.解:[A?1]=?(2)A =?30??1??2?7?1????012?? ∴A-1=??12??12?A??,B???23?35????,求解矩阵方程XA?B 13、设矩阵设矩阵
?x1X???x3解:设x2??x1?3x22x1?5x2??12?由XA?B即????23?x4?x?3x2x?5x434??? ??3?x1?1,x2?0x1?3x2?1即 2x1?5x2?2
3x4?x3?2x3??1?10????11?5x?2x?3x?143? 4 ∴X=?14、求解下列可分离变量的微分方程:
dy1xyx?yxx?e?edy?edxx?yedy?fedy?y?e?(1)解:dx e -e-y=ex+C 即 ex+e-y=C
dyxex?22x3ydy?xe2xdx3y?dx y3=xex-ex+C (2)解:3ydy=xedx ?15、求解下列一阶线性微分方程:
(1)
y??2y?(x?1)3x?1解:方程对应齐次线性方程的解为:y=C(X+1)2
由常数高易法,设所求方程的解为:y=C(x)(x+1)2
代入原方程得 C'(x)(x+1)2=(x+1)3 C'(x)=x+1
x2?x?c2 C(x)= x2?x?C)(x_?1)2故所求方程的通解为:(2
(2)
y??y??(x)dx?p(x)dx?2xsin2xy?e?(x)edx?C?x解:由通解公式
??1,Q(x)?2xsm2x,代入方式得其中 P(x)=-x
1?dxx1??dx??xdx?C???2xsm2x?e?cnx??=elnx?2xsm2x?edx?C=x?2sm2xdx?C=cx-xcos2x
Y=e
????16、求解下列微分方程的初值问题:(1)y??ey2x2x?y,y(0)?0
12x1e?Cedy??edxy'=e2x/ey 即eydy=e2xdx ? ey=2 将x=0,y=0代入得C=2 12x(e?1)为满足y(0)?0的特解y
∴e=2
x?xy?y?e?0,y(1)?0 (2)
解:方程变形得
yex1exyex?xdx?为一阶线性微分方程,其中P(x)?,Q(x)??edx?Cxxxxxy'+x
1??dxx1代入方式得Y=e
xdx?ex?1???1e?lnxlnxxedx?Ceedx?C??????xx??=x??=
??edx?C?x1xce?xx 将x=1,y=0代入=
1xee?xx 为满足y(1)=0的特解。 得C=-e ∴y=
17、求解下列线性方程组的一般解: ?2x3?x4?0?x1???x1?x2?3x3?2x4?0?2x?x?5x?3x?0234(1)?1)
02?1?2?1??1?10??11?32???01?11??????2?15?3????0?110?? 解:系数矩阵:A2=?x1?x4?2x3∴方程组的一般解为:x2?x4?x3 其中x3、x4为自由未知量
?2x1?x2?x3?x4?1??x1?2x2?x3?4x4?2?x?7x?4x?11x?5234?1(2)
解:对增广矩阵作初等行变换将其化为阿梯形
16?10?55?3712?14212?142?????01?12?14255?????2?1111??0?53?7?3???05?373???0000—????05?373???00000???A=17?4115故方程组的一般解是:
416337?x3?x4?x3?x4555 X2=555,其中x3,x4为自由未知量。
4?5?3??5?0???
X1=
?x1?x2?5x3?4x4?2?2x?x?3x?x?1?1234??3x1?2x2?2x3?3x4?3?7x?5x2?9x3?10x4???18.当为何值时,线性方程组?1有解,并求一般解。
?1?1?54?2?13?1??3?2?23?—
解:A=?7?5?9102??1?1?011?????013??????02?542?2??1?1?54?0113?9?3?13?9?3??????0013?9?3?00??8????26?18??14?00000??要使方程组
?x1??7x3?5x4?1?x??13x3?9x4?3有解,则??8此时一般解为答案: ?2(其中x1,x2是自由未知量)。
?x1?x2?x3?1??x1?x2?2x3?2?x?3x?ax?b23?119.a,b为何值时,方程组
解:将方程组的增广矩阵化为阶梯形矩阵:
1?1??1?1?11??1?1?1?1?1?1?11?22???02???02??11?11??????—?13??ab???04a?1b?1???00a?3b?3?? A=?由方程组解的判定定理可得当a=-3,b≠3时,秩(A)<秩(A),方程组无解当a=-3,b=3时,秩(A)=秩(A)=2<3,方程组无穷多解当a≠-3时,秩(A)=秩(A)=3,方程组有唯一解。 20、求解下列经济应用问题:
2(1)设生产某种产品q个单位时的成本函数为:C(q)?100?0.25q?6q(万元),
—
—
—
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库2017年电大经济数学基础形成性考核册答案 带题目(2)在线全文阅读。
相关推荐: