一、填空题: x?sinx1.limx?0x?___________________.答案:0
f(x)???x2?1,x?02.设??k,x?0,在x?0处连续,则k?________.答案:1 3.曲线y?x在(1,1)的切线方程是 .答案:
y?12x?12
4.设函数
f(x?1)?x2?2x?5,则f?(x)?____________.答案:2x x,则f??ππ5.设f(x)?xsin(2)?__________答案:?2
6.若?f(x)dx?2x?2x?c,则f(x)?___________________.答案:2xln2?2
7. ?(sinx)?dx?________.答案:sinx?c
218. 若?f(x)dx?F(x)?cF(1?x2,则?xf(1?x)dx? .答案:?2)?c
de9.设函数dx?1ln(1?x2)dx?___________.答案:0
P(x)?10. 若
?011x1?t2dt,则P?(x)?__________?.答案:
1?x2
??104?5?A??3?232?11.设矩阵???216?1??,则A的元素a23?__________________.答案:3
12.设A,B均为3阶矩阵,且
A?B??3,则
?2ABT=________. 答案:?72
13. 设A,B均为n阶矩阵,则等式(A?B)2?A2?2AB?B2成立的充分必要条件是 .案:AB?BA
14. 设A,B均为n阶矩阵,(I?B)可逆,则矩阵A?BX?X的解X?______________. 答案:
(I?B)?1A ???10?100?A???010?A???020??20???????1?00?1?15. 设矩阵?00?3?,则A?__________.答案:
??3??
f(x)?4?x?116.函数
In(x?1)的定义域为 答案:1<x≤4且x≠2
答
2y?3(x?1)17. 函数的驻点是________,极值点是 ,它是极 值点.答案:x?1,x?1,小
18.设某商品的需求函数为q(p)?10e111?p2,则需求弹性
Ep? .答案:?2p
19.行列式
D??111?____________?1?11.答案:4
16??11?A??0?132????00t?10??,则t____时,方程组有唯一解.答案:??1 20. 设线性方程组AX?b,且
二、单项选择题:
sinx?12e
1. 函数x???,下列变量为无穷小量是( C ) A.In(1?x) B.x/x?1 C.x2 D.x
2. 下列极限计算正确的是( B )A.x?0xlimx?1 B.x?0xlim?x?1 C.x?0limxsin1sinx?1lim?1x??xx D.
11ln101dxdxdxdxy?lg2xdy?2xxln10xx3. 设,则( B ).A. B. C. D.
4. 若函数f (x)在点x0处可导,则( B )是错误的 A.函数f (x)在点x0处有定义 B.D.函数f (x)在点x0处可微
11?1f()?x225.若x,则f'(x)?( B )A.1/ x B.-1/x C.x D.x
116. 下列函数中,( D )是xsinx2的原函数. A.2cosx2 B.2cosx2 C.-2cosx2 D.-2cosx2
x?x0limf(x)?A,但A?f(x0) C.函数f (x)在点x0处连续
111dx?dxlnxdx?d()2xdx?d(2x)xC.ln27. 下列等式成立的是( C). A.sinxdx?d(cosx)B.D.x
8. 下列不定积分中,常用分部积分法计算的是(C).
xdxcos(2x?1)dxxsin2xdxx1?xdx2????A., B. C. D.1?x
29. 下列定积分计算正确的是(D).
?A.
1?12xdx?2? B.
16?1dx?15? C.??/2?/2sinxdx?0sinxdx?0?? D.
??10. 下列无穷积分中收敛的是( B ). A.1?????1????1xdxdxedxsinxdx?1x2 C.?0?1x B. D.
11. 以下结论或等式正确的是( C ).A.若A,B均为零矩阵,则有A?B
B.若AB?AC,且A?O,则B?C C.对角矩阵是对称矩阵 D.若A?O,B?O,则AB?O
12. 设A为3?4矩阵,B为5?2矩阵,且乘积矩阵ACB有意义,则C为( A )矩阵.
A.2?4 B.4?2
C.3?5 D.5?3
TT13. 设A,B均为n阶可逆矩阵,则下列等式成立的是( C ). `
?1?1?1?1?1?1AB?BA(A?B)?A?B(A?B)?A?BA., B. C. D.AB?BA
14. 下列矩阵可逆的是( A ).
??123???10?1??023??101??11??11A.??003???? B.???123?? C.???? D.??00?22?? ?222?A???333?15. 矩阵?444????的秩是( B ).A.0 B.1 C.2 D.3
16. 下列函数在指定区间(??,??)上单调增加的是(B).A.sinx B.e xC.x 2 D.3 –17. 设
f(x)?1x,则f(f(x))?( C ). A.1/x B.1/ x 2 C.x D.x 2
11x?x18. 下列积分计算正确的是(A).A.?ex?e?x?12dx?0e?e B.??12dx?0
1C.
?1-1xsinxdx?0 D.
?-1(x2?x3)dx?0
19. 设线性方程组Am?nX?b有无穷多解的充分必要条件是( D ). A.r(A)?r(A)?m B.r(A)?n C.m?n D.r(A)?r(A)?n
??x1?x2?a1?x2?x3?a20. 设线性方程组?2?x1?2x2?x3?a3,则方程组有解的充分必要条件是( C ).
A.a1?a2?a3?0 B.a1?a2?a3?0 C.a1?a2?a3?0 D.?a1?a2?a3?0 三、解答题 1、计算极限
(1)解:
limx2?3x?21lim(x?1)(x?2)limx?21x?1x2?1??2= x?1(x?1)(x?1)=x?1x?1=2 x2(2)解:
lim?5x?61lim(x?2)(x?3)limx?31x?2x2?6x?8?2= x?2(x?2)(x?4)=x?2x?4=-2 1?x?11lim1?x?1lim?11(3)解:limx?0x??2=s?0(1?x?1)x=s?01?x?1=-2 x
35?xx224x2?3x?51lim3??2lim2?xx (4)解:x??3x?2x?43=s??1?sm3x~3xlimsm3xlim3x3sin3x3lim?x?0sin5x5∵x?0时,sm5x~5x ∴x?0sm5x=x?05x=5 (5)解:
limx2?4limx2?4(6)解:x?2sin(x?2)=x?2x?2=x?2(x+2)=4
lim2.计算下列不定积分
3()xe?C(3)xx33x3e()dxdxln?C?x?eee(1)== =ln3?1
1(2)
?(1?x)2x2?12XX2dx?(??)dx2xXXX==
4x332?2x552?C
x2?4x2(x?2)(x?2)dx(x?2)dxdx??2x?C??x?22x?2(3)=== 1111dxd(1?2x)ln1?2x??21?2x21?2x(4)=-=-+C
111222222222(2?x)dx(2?x)d(2?x)(2?x)?Cx2?xdx???223(5)===
113(6)
?sinxxdx=Z?sinxdx=-2cosx?C
(7)
?xsinxxxxxxdxxdcos?2cosdx?4sm?C??2=-22=-2xcos22=-2xcos22
(8)?ln(x?1)dx=?ln(x?1)d(x?1)=(x+1)ln(x+1)-?(x?1)dln(x?1)=(x+1)ln(x+1)-x+c
3.计算下列定积分。
(1)
??
2?11?xdx1x
??1(1?x)dx??1(x?1)dx==(x-
122x21x2)?(?x)12?1215=2+2= 2
2
(2)
1
12211exx?e?eddx?1=e?e x=x2=13edlnxe(1?lnx)d(lnx?1)2(1?lnx)dx??1x1?lnx=11?lnx=1==4-2=2
(3)
?e31e3131?2121112122?xsm2x?sm2xdxcos2x1xdsm2x?2xcos2xdx?2?2242000?(4)0=0===2
?1???(5)
?e1222eex21eexe2x2ee2x2xe2e1e?1lnx???dx???dx?(?)xlnxdx?1lnxd112x=241=212=2x=244=4 =
44?xdx?xedx(1?xe)dx?0??0(6)0=
4?x44?x4?xe??ed(?x)4?4e?4?e?x4?x00?0?xde
0=4?4e?4?e?4?1=5?5e?4 =4==
4?x1?xsin?b,x?0?x?f(x)??a,x?0?sinxx?0?x?4、.设函数,
问:(1)当a,b为何值时,f(x)在x?0处有极限存在?(2)当a,b为何值时,f(x)在x?0处连续.
limlimsinx1??x?1 解:x?0f(x)= x?0(sinx+b)=b x?0f(x)= x?0limlim(1)要使f(x)在x=0处有极限,只要b=1,
limlim??x?0x?0(2)要使f(x)在x=0处连续,则f(x)= =f(0)=a 即a=b=1时,f(x)在x=0处连续
5、计算函数的导数或微分:
122x2x2?xlogyy?x?2?logx?22 (1),求 解:y'=2+2xlog+ a(cx?d)?(ax?b)cad?bcax?by?22?(cx?d)(cx?d)ycx?d (2) ,求 解:y'==
y?(3)
3x?5,求y? 解:y'=[(3x?5)1?121]'=-2(3x?5)?323·(3x-5)'=-2(3x?5)?32
11xy?x?xe(4) ,求y? 解:y'=2x-(ex+xex)=2x-ex-xex
axy?esinbx,求dy 解:∵y'=aeaxsinbx+beaxcosbx=eax(asmbx+bcosbx) (5)
∴dy=eax(asmbx+bcosbx)dx
12(6) y?e?xx,求dy 解: ∵y'=-x1xe1x3+2x1212 ∴dy=(-xe1x3+2x)dx
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库2017年电大经济数学基础形成性考核册答案 带题目在线全文阅读。
相关推荐: