?(cos??sin?)(cos??sin?)cos??sin??,??????????????????
2cos?(cos??sin?)2cos??9分
1又??为第二象限角,且cos???
3?sin??22.???????????????????????????????310分
122??cos??sin?3?1?22.???????????????????原式??322cos?2?312分
18.解:(Ⅰ)甲班有4人及格,乙班有5人及格.?????????????????2分
事件“从两班10名同学中各抽取一人,至少有一人及格”记作A, 则
11C6C307P(A)?1?15?1??????????????????????????6分 1C10C1010010(Ⅱ)X取值为0,1,2,3.?????????????????????????7分
1211121C6C5C6C5C5C4C5219P(X?0)?1?2?; P(X?1)?1?2?1?2?;
C10C1015C10C10C10C10451211211C6C5C5C516C5C4C44P(X?2)?1?2?1?2?; P(X?3)?1?2?.
C10C10C10C1045C10C1045所以X的分布列为
X 0 1 2 3 6
P(X) 2 1519 4516 454 45 ??????????11分
所以E(X)?12分
19.解:(Ⅰ)连结OE,????????????????????????????1分
19?32?127?.?????????????????????????
455?四边形ABCD是正方形,
?O是AC的中点,??????????????2分
又?E是侧棱SC的中点,?OE//SA. ??????4分 又OE?平面BDE,SA?平面BDE,
?直线SA//平面BDE.?????????????5分
(Ⅱ)建立如图空间坐标系,则D(0,?22,0),
B(0,22,0),S(0,0,22),C(?22,0,0). ?????????BD?(0,?42,0),BC?(?22,?22,0),
???SB?(0,22,?22).?????????????????????????????7分
?设平面SBC的法向量n?(x,y,1),则有
???????y?1?nSB?0?22y?22?0即 解得 ????????x??1???nBC?0???22x?22y?0??n?(?1,1,1).????????????????????????????????9分
直线BD与平面SBC所成角记为?,
7
?????nBD423则sin???????.????????????????????????33?42nBD12分
20.解:(Ⅰ)设bn?分
an?15?1,b??2????????????????????112n2bn?1?bn?=
an?1?1an?11??(an?1?2an)?1? n?1nn?1?2221?(2n?1?1)?1?n?1???1???????????????????????????2?4分
?an?1??n??2?所以数列为首项是2公差是1的等差数
列.????????????????5分
(Ⅱ)由(Ⅰ)知,
an?1a1?1??(n?1)?1, n22?an?(n?1)?2n?1?????????????????????????????
7分
?Sn?(2?21?1)?(3?22?1)???(n?2n?1?1)?[(n?1)?2n?1]
?Sn?2?21?3?22???n?2n?1?(n?1)?2n?n??????????????8分
设Tn?2?21?3?22???n?2n?1?(n?1)?2n ① 2Tn?2?22?3?23???n?2n?(n?1)?2n?1. ②
②-①,得
Tn??2?21?(22?23???2n)?(n?1)?2n?1?n?2n?1???????????????
?11分
所以Sn?n?2n?1?n?n?(2n?1?1)???????????????????????
8
12分
21.解(Ⅰ)设点P的坐标为(x,y),则点Q的坐标为(x,2y),
????????依据题意,有AQ?(x?1,2y),BQ?(x?1,2y).?????????????????
1分
?????????AQ?BQ?1,?x2?1?2y2?1.
?动点P所在曲线C的方程是
x2?y2?1.????????????????????3分 2(Ⅱ)因直线l过点B,且斜率为k??22(x?1).????????5,故有l:y??22分
?x2?y2?1??21?0.?????????????联立方程组?,消去y,得2x2?2x??y??2(x?1)??26分
设M(x1,y1)、N(x2,y2),
可得
?x1?x2?1??1xx??12??2,于是
?x1?x2?1??2.??????????????????????7分 y?y??12?2??????????????????2) OM?ON?OH?0又,得OH?(?x1?x2,?y1?y2),即H(?1,?2而点G与点H关于原点对称,
9
于是,可得点
G(21,).????????????????????????????8分
2若线段MN、GH的中垂线分别为l1和l2,kGH?l1:y?2,则有 221?2(x?),l2:y??2x.??????????????????????429分
?21?2(x?)?y?联立方程组?42,
?y??2x?12).???????????????????????解得l1和l2的交点为O1(,?8810分
9322311因此,可算得|O1H|?()2?()?,
888122311|O1M|?(x1?)2?(y1?)?.
88812311),半径为.?????所以M、G、N、H四点共圆,且圆心坐标为O1(,?88812分
a2?212ax(x?)a2a,(x??1)????????????22.解:f?(x)?2?2x?a?111?axa?ax221分
10
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库山东省淄博市2012届高三数学第一次模拟考试 理 新人教A版(2)在线全文阅读。
相关推荐: