x = 0:(pi/100):(pi/4); s1 = (480/pi.^2) * x.^2 v1=(960/(pi.^2))*w.*x; a1 =97.4*w.^2;
t =(pi/4):(pi/100):(pi/2); s11 = 60-(480/pi.^2)*(pi/2-t).^2; v11 = ((960*w)/(pi.^2))*((pi/2-t)); a11=-(1840/pi.^2)*w.^2; y = (pi/2):(pi/1000):(3*pi/4); s2 =60; v2=0; a2 = 0;
z = (3*pi/4 ):(pi/1000):(43*pi/36);
s3 = 60*(43/16 - (9*z)/(4*pi) + 1/(2*pi).*sin ((9/2)*z - 27* pi/8)); v3 = -135/pi * w .* (1 - cos((9/2)*z - 27*pi/8)); a3 = -((607.5 * w.^2)/pi) .*sin(9*z/2 - 27*pi/8); c = (43*pi/36):(pi/100):( 2*pi); s4 = 0; v4 = 0; a4 = 0;
plot(x,a1,'r',t,a11,'r',y,a2,'r',z,a3,'r ',c,a4,'r') xlabel('转角/rad') ylabel('加速度/(m/s)') title('加速度与转角曲线')
三.凸轮轮廓绘制 ds?sd?1、 凸轮机构的线图及基圆半径和偏距的确定
程序:x = 0:(pi/100):(pi/4); s1 = (480/pi.^2) * x.^2 news1 = 2*(480/pi.^2) * x t =(pi/4):(pi/100):(pi/2); s11 = 60-(480/pi.^2)*(pi/2-t).^2; new11=2*(480/pi.^2)*(pi/2-t); y = (pi/2):(pi/1000):(3*pi/4); s2 = 60; news2 = 0; z = (3*pi/4 ):(pi/1000):(43*pi/36); s3 = 60*(43/16 - (9*z)/(4*pi) + 1/(2*pi).*sin ((9/2)*z - 27* pi/8)); news3 = 60*( - 9/(4*pi) + 9/(4*pi).*cos ((9/2)*z - 27* pi/8)); c = (43*pi/36):(pi/100):( 2*pi); s4 = 0; news4 = 0; plot(news1,s1,'b',new11,s11,'b',news2,s2,'b',news3,s3,'b',news4,s4,'b') xlabel('ds/dp'); ylabel('(位移s/mm)') title('ds/dp 与位移s曲线') grid 凸轮机构的
ds?s线图如下图所示: d?
设凸轮顺时针旋转,所以右侧是推程,左侧是回程。 得到取旋转轴心的区域(划线部分)
取O(10,-120) 偏距e=10 基圆半径r0=120
2、 滚子半径的确定及凸轮理论廓线和实际廓线的绘制
程序:
s0 =120;e =10;
x = 0:(pi/1000):(pi/4); s = (480/pi.^2) * x.^2;
x1 = (s + s0).*cos(x)-e*sin(x); y1 = (s0 + s).*sin(x) +e*cos(x); t =(pi/4):(pi/1000):(pi/2); s= 60-(480/pi.^2)*(pi/2-t).^2; x11 = (s + s0).*cos(t)-e*sin(t); y11 = (s0 + s).*sin(t) + e*cos(t); y = (pi/2):(pi/1000):(3*pi/4); s =60;
x2 = (s + s0).*cos(y)-e*sin(y); y2 = (s0 + s).*sin(y) + e*cos(y); z = (3*pi/4):(pi/1000):(43*pi/36);
s = 60*(43/16 - (9*z)/(4*pi) + 1/(2*pi).*sin ((9/2)*z - 27* pi/8)); x3 = (s + s0).*cos(z)-e*sin(z); y3 = (s0 + s).*sin(z) + e*cos(z); c = (43*pi/36):(pi/1000):( 2*pi); s = 0;
x4 = (s + s0).*cos(c)-e*sin(c); y4 = (s0 + s).*sin(c) + e*cos(c);
plot(x1,y1,'b',x11,y11,'b',x2,y2,'b',x3,y3,'b',x4,y4,'b'); xlabel('x/mm') ylabel('y/mm')
title('理论轮廓曲线')
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库哈工大机械原理大作业之凸轮结构分析(2)在线全文阅读。
相关推荐: