有很高的同源性。⑥斑马鱼:胚胎发育在体外,发育快,过程程透明。⑦小鼠:进化方面最接近人类。⑧拟南芥:个体小,生长周期快,种子多,生活力强,最小的植物基因组,自花授粉植物,基因高度纯合,突变率高。
10、细胞拆合中,细胞重组的方式有哪几种?
答:①胞质体与完整细胞重组;②微细胞与完整细胞重组形成细胞;③胞质体与核体重组形成重组细胞;④细胞器与完整细胞的重组。 第四章:细胞质膜
1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系? 膜的流动性:生物膜的基本特征之一,细胞进行生命活动的必要条件。
1)膜脂的流动性主要由脂分子本身的性质决定的,脂肪酸链越短,不饱和程度越高,膜脂的流动性越大。温度对膜脂的运动有明显的影响。在细菌和动物细胞中常通过增加不饱和脂肪酸的含量来调节膜脂的相变温度以维持膜脂的流动性。在动物细胞中,胆固醇对膜的流动性起重要的双向调节作用。 膜蛋白的流动:荧光抗体免疫标记实验;成斑现象(patching)或成帽现象(capping) 2)膜的流动性受多种因素影响:细胞骨架不但影响膜蛋白的运动,也影响其周围的膜脂的流动。膜蛋白与膜分子的相互作用也是影响膜流动性的重要因素。 3)膜的流动性与生命活动关系:信息传递;各种生化反应;发育不同时期膜的流动性不同 膜的不对称性:
1)膜脂与糖脂的不对称性:糖脂仅存在于质膜的ES面,是完成其生理功能的结构基础 2) 膜蛋白与糖蛋白的不对称性:膜蛋白的不对称性是指每种膜蛋白分子在细胞膜上都具有明确的方向性;糖蛋白糖残基均分布在质膜的ES面;膜蛋白的不对称性是生物膜完成复杂的在时间与空间上有序的各种生理功能的保证。
2、膜的流动镶嵌模型是怎样形成的?它在膜生物学研究中有什么开创意义? 1) 形成的原因及前提:
(1) 单位膜模型无法满意的解释许多膜属性,如膜结构不断地发生动态变化;各种膜没有一成不变的统一性;各种膜均具有各自的特定厚度,提取膜蛋白的难易程度不同;各种膜的蛋白质与脂类的成份比率不同等。
(2) 本世纪60年代,新技术的发明和应用,对质膜的认识越来越深入。 (3) 利用冷冻蚀刻法显示出膜上有球形颗粒,
(4) 用示踪法表明膜的结构形态在不断地发生变动。
在此基础上,S.J.Singer和G.L.Nicolson在1972年提出了膜的流动镶嵌模型(fluid mosaic model)。 2) 意义:流动镶嵌模型除了强调脂类分子与蛋白质分子的镶嵌关系外,还强调了膜的流动性,主张膜总是处于流动变化之中,脂类分子和蛋白质分子均可做侧向流动。 后来有许多实验结果支持了流动镶嵌模型的观点。
3、 质膜在细胞生命活动中都有哪些重要作用? 1)为细胞的生命活动提供相对稳定的内环境; 2)选择性的物质运输,包括代谢底物的输入与代谢产物的排除,其中伴随着能量的传递; 3)提供细胞识别位点,并完成细胞内外信息跨膜传递; 4)为多种酶提供结合位点,使酶促反应高效而有序地进行; 5)介导细胞与细胞、细胞与基质之间的连接; 6)质膜参与形成具有不同功能的细胞表面特化结构。
4、质膜的膜蛋白都有哪些类别?各有何功能?膜脂有哪几种?
1) 膜蛋白根据功能的不同,可将分为四类:运输蛋白,连接蛋白,受体蛋白和酶。 运输蛋白:物质运输,与周围环境进行物质和能量的交换;连接蛋白:细胞连接;
受体蛋白:细胞识别,信号传递; 酶:具有催化活性。
2) 膜脂:膜脂主要为磷脂和胆固醇,磷脂主要包括有卵磷脂和脑磷脂(cephalin),鞘脂(带有一个氨基)和糖脂(结合有寡糖链)。 5、何谓细胞外被?它有哪些功能?
1) 细胞外被是指动物细胞表面的由构成质膜的糖蛋白和糖脂伸出的寡糖链组成的厚约10~20nm的绒絮状结构。
2) 功能:(1) 细胞识别;(2) 血型抗原;(3) 酶活性。
6、细胞膜表面有哪几种常见的特化结构?膜骨架的基本结构与功能是什么?
1)细胞表面特化结构主要包括:膜骨架、鞭毛、纤毛、变形足和微绒毛,都是细胞膜与膜内的细胞骨架纤维形成的复合结构,分别与维持细胞的形态、细胞的运动、细胞与环境的物质交换等功能有关。
2)膜骨架:指细胞质膜下与膜蛋白相连的由纤维蛋白组成的网架结构,其功能是维持细胞质膜的形状并协助质膜完成多种生理功能。
7、细胞连接都有哪些类型?各有何结构特点?
细胞连接按其功能分为:紧密连接,锚定连接,通讯连接。 1) 紧密连接(封闭连接),细胞质膜上,紧密连接蛋白(门蛋白)形成分支的链索条,与相邻的细胞质膜上的链索条对应结合,将细胞间隙封闭。
2) 锚定连接:通过中间纤维(桥粒、半桥粒)或微丝(粘着带和粘着斑)将相邻细胞或细胞与基质连接在一起,以形成坚挺有序的细胞群体、组织与器官。
3) 通讯连接:包括间隙连接和化学突触,是通过在细胞之间的代谢偶联、信号传导等过程中起重要作用的连接方式。
4) 胞间连丝连接:是高等植物细胞之间通过胞间连丝来进行物质交换与互相联系的连接方式。
8、细胞外基质与细胞外被有何区别?它们如何相互作用?
1) 细胞外被是指动物细胞表面的由构成质膜的糖蛋白和糖脂伸出的寡糖链组成的厚约10~20nm的绒絮状结构,是细胞膜的一部分。
2) 细胞外基质是存在细胞之间的非细胞性的物质,是由一些蛋白质和多糖大分子构成的精密有序的网络结构,是细胞的分泌物在细胞附近构成的精密结构,它不同于细胞外被之处是,通过与细胞质膜中的细胞外基质受体结合,同细胞建立了相互关系。 9、细胞外基质组成、分子结构及生物学功能是什么?
1) 细胞外基质(EM)成分可表示如下: 多糖:糖胺聚糖,蛋白聚糖 纤维蛋白:胶原,弹性蛋白,纤连蛋白,层粘连蛋白;
2) 作用: 细胞外基质可影响细胞的发育、极性和行为活动。
(1) 糖胺聚糖(GAG)链构成的网络,形成了水化凝胶,各种蛋白质纤维埋藏于凝胶之中。GAG多糖链带负电荷,同蛋白质共价结合形成蛋白聚糖。 (2) 蛋白聚糖: a. 渗滤作用; b. 细胞表面的辅受体; c. 调节分泌蛋白的活性; d. 细胞间化学信号传递。 (3) 胶原,弹性蛋白 :结构作用
(4) 纤连蛋白,层粘连蛋白:黏着作用。 10、胶原纤维的装配过程都经过哪些步骤?
胶原纤维是经多步过程装配而成,包括胶原分子的合成、分泌和修饰等步骤。 1) 内质网膜结合的核糖体上合成胶原分子的多肽链,最初合成的多肽链为前体肽链,称为前α链(pro-αchain)。
2) 合成的前体肽链进入内质网腔,此前体链除在氨基端带有信号肽序列外,在氨基端和羧基
端尚带有称为前肽(propeptides)的氨基酸序列。在内质网腔中,前肽链中的脯氨酸和赖氨酸残基分别被羟化为羟脯氨酸和羟赖氨酸。每一条前α链与其它两条前α链通过由羟基形成的氢键相互结合,构成了3股螺旋的前胶原(procollagen)分子。此分子的装配起始于内质网,后经高尔基体装配完成,被包装到分泌泡中,分泌到细胞外。 3) 前胶原被分泌到细胞外之后,前肽序列被专一的蛋白质水解酶切除,前胶原转变成了胶原分子。
4) 胶原分子在细胞外又进一步装配成了胶原原纤维,最后后者又装配成了胶原纤维。原纤维一旦形成,胶原分子便通过在赖氨酸间的共价结合,加固了原纤维的结构。这种结合要依赖于原纤维结合胶原(fibril-associated collagen)(如IX型和II型胶原分子)的参与。 11、纤连蛋白分子有哪些结构特点?如何发挥作用? 1) 分子是由两个亚基组成的二聚体,在靠近羧基端有一对二硫键将两个亚基连在一起,使两个亚基排成“V”字形。亚基多肽链折叠成5-6个棒状和球形功能区,各功能区分别可同特定的分子或细胞发生转移结合,功能区之间的连接部位可折屈,对蛋白酶敏感。
2) 多肽链含有三种重复序列,即I、II、III型组件,功能区即是由这三种组件重复组合而成。在III型重复中含有特异的三肽序列,-Arg-Gly-Asp-(RGD),此RGD序列可被细胞表面基质受体中的整联蛋白(integrin)所识别,从而同细胞结合,促使细胞同基质结合。促进细胞迁移,对细胞的迁移有导向作用
12、红细胞膜骨架的基本结构与功能。
答:红细胞膜骨架是在红细胞膜的内侧,由膜蛋白和纤维蛋白组成的网架结构。红细胞膜内存在的蛋白质主要包括血影蛋白、锚蛋白、带3蛋白、带4.1蛋白和肌动蛋白,血型糖蛋白。膜支架蛋白主要成分包括血影蛋白、肌动蛋白、锚蛋白和带4.1蛋白等。血影蛋白在带4.1蛋白的协助下与肌动蛋白结合成膜骨架基本网络,带4.1蛋白和血型糖蛋白相互作用,锚定蛋白与血影蛋白、带3蛋白相互作用。
膜骨架复合体与质膜蛋白的相互作用实现红细胞质膜的刚性与韧性,维持红细胞的形态。 13、何为内在膜蛋白?它以以什么方式与脂双层膜相结合?
答:⑴内在膜蛋白:或称整合膜蛋白,全部或部分与磷脂双层的疏水核相互作用、牢固连接的膜结合蛋白,多数为跨膜蛋白,也有些插入脂双层中,只有用去垢剂处理才能将其从膜上移去。 ⑵①疏水性相互作用:膜蛋白的跨膜结构域通过范德华力等与脂双层分子的疏水核心相互作用,跨膜结构域是与膜脂结合的主要部位。这些结构域主要有α螺旋,β折叠片结构。α螺旋的外侧是非极性链,内测是极性链,形成特异极性分子的跨膜通道。反向平行的β折叠片相互作用形成非特异性的跨膜通道,可允许小分子自由通过; ②离子键作用:磷脂极性头部是带负电荷的,它可以直接与带正电荷的氨基酸残基相互作用,而通过以Ca、Mg等阳离子为中介,与带负电荷的氨基酸残基间接作用; ③共价结合:某些膜蛋白氨基酸残基与脂肪酸分子或糖脂共价结合。 14、Na+/葡萄糖协同运输的主要特点是什么?
无须直接消耗ATP,但需要依赖Na+梯度和电化学梯度。载体蛋白有两种结合位点,分别结合Na与葡萄糖;载体蛋白借助Na/K泵建立的电位梯度,将Na与葡萄糖同时转运到胞内;胞内释放的Na又被Na/K泵泵出细胞外建立Na浓度。 15、膜蛋白的功能?
作为物质运输通道,转运特定的物质进出细胞;作为酶,催化相关的代谢反应;作为细胞间介导,起连接作用;作为受体,起信号接收与传递作用等;细胞识别,起免疫反应。 16、初生细胞壁和次生细胞壁
初生细胞壁与次生细胞壁表明了细胞的不同成熟阶段。初生细胞壁包围着正在生长的植物细胞,为了允许细胞的进一步生长,因此具有一定程度的伸张能力。次生细胞壁发生于更为成
熟的植物细胞,也更坚硬。它们较初生细胞壁含有更多的纤维素,次生细胞壁是更强的支撑结构。
17、细胞粘着分子有哪些,分别有什么功能?
动物细胞表面介导细胞同细胞或细胞外基质黏附的蛋白质分子。均为整合膜蛋白,包括:整联蛋白、钙黏着蛋白、选择素、免疫球蛋白超家族。黏着分子多数需要依赖Ca或Mg才起作用,这些分子介导的细胞识别与黏着还能在细胞骨架的参与下,形成细胞连接,如桥粒等。 ①钙黏蛋白:是一种同亲型结合的黏着因子、Ca2+依赖的细胞黏着糖蛋白,对胚胎发育中的细胞识别、迁移和组织分化以及成体组织器官构成具有重要作用;
②整联蛋白:异亲型细胞结合,Ca2+或Mg2+依赖性的细胞黏着分子,由α和β两个亚基形成的异二聚体糖蛋白,可介导细胞与细胞及细胞与细胞外基质的粘附链接;
③选择素:一类异亲型结合、Ca2+依赖的细胞黏着分子,能与特异糖基识别并结合。选择素是跨膜蛋白,其胞外部分具有凝集素样结构域。凝集素:是动物细胞和植物细胞都能够合成和分泌的、能与糖结合的蛋白质,在细胞识别和黏着反应中其重要作用,主要是促进细胞间的黏着;
④免疫球蛋白超家族:同亲性或异亲性、不依赖Ca2+,含有免疫球蛋白类似(Ig)结构域。参与免疫功能;介导细胞间的黏着作用。
18、细胞通过那些方式产生社会联系?有何生物学意义?
细胞主要通过封闭连接、锚定连接、通讯连接等主要方式产生社会联系。细胞通讯和信号转导是细胞社会联系的核心问题。
细胞社会联系的主要功能在于提供细胞之间彼此物质、信息交流的通道。在多细胞生物中,没有一个孤立的细胞,细胞彼此之间通过各种连接方式产生社会联系,进而形成和谐的细胞社会。
第五章 物质的跨膜运输
1、物质跨膜运输有哪几种方式?它们的异同点。
跨膜运输:直接进行跨膜转运的物质运输,又分为简单扩散、协助扩散和主动运输。 1) 简单扩散:顺物质电化学梯度,不需要膜运输蛋白,利用自身的电化学梯度势能,不耗细胞代谢能;
2) 协助扩散:顺物质电化学梯度,需要通道蛋白或载体蛋白,利用自身的电化学梯度势能,不耗细胞代谢能;
3) 主动运输:逆物质电化学梯度,需要载体蛋白,消耗细胞代谢能。 2、比较主动运输与被动运输的特点及其生物学意义。 1)主动运输的特点及其生物学意义: 特点:由载体蛋白所介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向浓度高的一侧进行跨膜转运。需要与某种释放能量的过程相偶联。 类型:由ATP直接提供能量(Na+-K+泵、Ca2+泵、)、间接提供能量(Na+-K+泵或H+泵、载体蛋白的协同运输)、光驱动的三种类型。 生物学意义:动物细胞借助Na+-K+泵维持细胞渗透平衡,同时利用胞外高浓度的Na+所储存的能量,主动从细胞外摄取营养;植物细胞、真菌(包括酵母)和细菌细胞借助膜上的H+泵,将H+泵出细胞,建立跨膜的H+电化学梯度,利用H+电化学梯度来驱动主动转运溶质进入细胞;Ca2+泵主要存在于细胞膜和内质网膜上,将Ca2+输出细胞或泵入内质网腔中储存,以维持细胞内低浓度的游离Ca2+,Ca2+对调节肌细胞的收缩与舒张至关重要。 2)被动运输的特点及其生物学意义:
特点:物质的跨膜运输的方向是由高浓度向低浓度,运输动力来自物质的浓度梯度,不需要细胞提供代谢能量。
类型:单扩散和载体介导的协助扩散。协助扩散的载体为:载体蛋白和通道蛋白,载体蛋白
既可介导被动运输和主动运输;通道蛋白只能介导被动运输。 生物学意义:每种载体蛋白能与特定的溶质分子结合,通过一系列构象改变介导溶质分子的跨膜转运;通道蛋白是多次跨膜亲水、离子通道,充许适宜大小分子和带电荷的离子通过,其显著特点为:⑴具有离子选择性,转运速率高,净驱动力是溶质跨膜的电化学梯度;⑵离子通道是门控的,其活性是由通道开或关两种构象所调节,通过通道开关应答于适当地信号。 3、说明Na+-K+泵的工作原理及其生物学意义。
Na+-K+泵是一种典型的主动运输方式,由ATP直接提供能量。Na+-K+泵存在于细胞膜上,是由α和β二个亚基组成的跨膜多次的整合膜蛋白,具有ATP酶活性。
工作原理:在细胞内侧α亚基与Na+相结合促进ATP水解,α亚基上的天门冬氨酸残基磷酸化引起α亚基构象发生变化,将Na+泵出细胞,同时细胞外的K+与α亚基的另一位点结合,使其去磷酸化,α亚基构象再度发生变化将K+泵进细胞,完成整个循环。Na+依赖的磷酸化和K+依赖的去
磷酸化引起构象变化有序交替进行。每个循环消耗一个ATP分子,泵出3个Na+和泵进2个K+
。 生物学意义:动物细胞借助Na+-K+泵维持细胞渗透平衡,同时利用胞外高浓度的Na+所储存的能量,主动从细胞外摄取营养。
4、动物细胞、植物细胞和原生动物细胞应付低渗膨胀的机制有何不同?
①动物细胞通过泵出离子维持细胞内低浓度溶质,如钠钾泵、钙泵等。 ②植物细胞依靠细胞壁避免膨胀和破裂,从而耐受较大的跨膜渗透差异。 ③原生动物通过收缩定时排除进入细胞的过量的水而避免膨胀。。
5、比较胞饮作用和吞噬作用的异同。
胞饮和吞噬是细胞胞吞作用的两种类型。胞饮作用是一个连续发生的过程,所有真核细胞都能通过胞饮作用连续摄入溶质和分子;吞噬作用首先需要被吞噬物与细胞表面结合并激活细胞表面受体,是一个信号触发过程。胞饮泡的形成需要网格蛋白、结合素蛋白和结合蛋白等的帮助;吞噬泡的形成则需要微丝及其结合蛋白的帮助,在多细胞动物体内,只有某些特化细胞具有吞噬功能。
6、比较组成型胞吐途径和调节型胞吐途径的特点及其生物学意义。
细胞的胞吐作用是将细胞内的分泌泡或其他某些膜泡中的物质通过细胞质膜运出细胞的过程。 特点:
1)真核细胞从高尔基体反面管网区分泌的囊泡向质膜流动并与之融合的稳定过程即组成型的胞吐途径。通过连续性的组成型胞吐途径:⑴细胞新合成的囊泡膜的蛋白和脂类不断地供应质膜更新,以确保细胞分裂前质膜的生长;⑵囊泡内可溶性蛋白分泌到细胞外,成为质膜外围蛋白、胞外基质组分、营养成分或信号分子等。
2)特化的分泌细胞调节型胞吐途径存在于特殊机能的细胞中,分泌细胞产生的分泌物(激素、粘液或消化酶)储存在分泌泡内,当细胞在受到胞外信号刺激时,分泌泡与质膜融合并将内含物释放出去。
生物学意义:细胞的质膜更新,维持细胞的生存与生长。 7、质膜在细胞吞吐作用(cytosis)中起什么作用? 1) 识别被内吞物质; 2) 形成陷穴小泡;
3) 包围细胞外物质,形成小泡;脱离质膜,进入细胞内部; 4) 同细胞质中的小泡融合,把其所含的物质吐到细胞外。
8、比较P型离子泵、V型质子泵、F型质子泵和ABC超家族的异同。
1、P型离子泵(P-type ion pump),或称P型ATPase。此类运输泵运输时需要磷酸化(P是phosphorylation的缩写),包括Na+-K+泵、Ca2+离子泵。 2、V型泵(V-type pump),或称V型
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库细胞问答题(2)在线全文阅读。
相关推荐: