近年来,超级电容应用的的地方越来越多了。。。
电位的升高和增大电极表面积达到提高电容量的目的。电极P电解质双电层上可贮存的电量其典型值约为15~40 μF·cm - 2.选用具有高表面积的高分散电极材料可以获得较高的电容。
对理想可极化体系而言,可通过无限提高充电电压而大量储存能量。但是,对于实际体系却受电极材料和电解液组成的电极系统的可极化性和溶剂分解的限制,可通过加大电极表面积来增加电容值。电容C 可由下式给出:
式中:ε0 为自由空间的绝对介电常数,ε为电导体和内部H elmhotz 面间区域的相对介电常数,A 为电极表面积,d 为导体与内H elmhotz 面之间的距离。近年来研究主要集中在提高碳材料的表面积和控制碳材料的孔径及孔径分布,并开发出许多不同类型的碳材料,主要有: 活性碳粉、活性炭纤维、碳气凝胶、碳纳米管等。
2.贵金属氧化物电极电容器:对贵金属氧化物电极电容器的研究,主要采用RuO2,IrO2等贵金属氧化物作为电极材料。由于电极的导电性比碳电极好,电极在硫酸中稳定,可以获得更高的比能量,制备的电容器比碳电极电容器具有更好的性能,因此具有很好的发展前景。但是,由于RuO2 贵金属的资源有限、价格昂贵限制了它的使用。以RuO2·nH 2O无定型水合物作电极,5.3mol·L-1H2SO4 作电解液所制得的电容器比电容能达到700F·g - 1;而以无定型水合物MnO2·nH2O作电极,2m ol·L- 1KCl水溶液作电解液所制得的电容器比电容也可达到200F·g - 1.但比较而言,因为在中性KCl水溶液中材料比较稳定,不发生化学副反应,以KCl水溶液作电解液适用于多种电极材料。以RuO2作为电极材料的研究主要集中在电极制备方法上。
3.导电聚合物电极电容器:导电聚合物电极电容器作为一种新型的电化学电容器,具有高性能和比贵金属超级电容器更优越的电性能。可通过设计选择相应聚合物的结构,进一步提高聚合物的性能,从而提高电容器的性能。
导电聚合物电极电容器可分为3 种类型:对称结构--电容器中两电极为相同的可p型掺杂的导电聚合物(如聚噻吩);不对称结构--两电极为不同的可进行p型掺杂的聚合物材料(如聚吡咯和聚噻吩);导电聚合物可以进行p型和n 型掺杂,充电时电容器的一个电极是n型掺杂状态而另一个电极是p 型掺杂状态,放电后都是去掺杂状态,这种导电聚合物电极电容器可提高电容电压到3V,而两电极的聚合物分别为n 型掺杂和p 型掺杂时,电容器在充放电时能充分利用溶液中的阴阳离子,结果它具有很类似蓄电池的放电特征,因此被认为是最有发展前景的电化学电容器。研究工作主要集中在寻找具有优良掺杂性能的导电聚合物,提高聚合物电极的放电性能、循环寿命和热稳定等方面。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库超级电容器基础知识详解(3)在线全文阅读。
相关推荐: