77范文网 - 专业文章范例文档资料分享平台

cvpr2013-Modeling Mutual Visibility Relationship in Pedestri(3)

来源:网络收集 时间:2021-01-20 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

发表在CVPR13上的行人检测方法

Table1.Overviewofourpedestriandetectionapproach.1.obtainpartdetectionscoresbypartdetector;

2.estimatep(y1|y2=0,x1)in(2)andφ(y;x)in(3)withthedeepmodelinSection4,estimateφ|xp(y;x)in(3)withGMM;3.p(y11,x2)=p(y1,y2=0|x1,x2)+p(y1,y2=1|x1,x2).

modelwasusedforpedestriandetectionin[25,24].The

approachesin[25,24,19]focusedonisolatedobjectsorpedestrians.Thispaperfocusesonco-existingpedestrians,whichhasnotbeenconsideredin[25,19,24].

3.Overviewofourapproach

Inthispaper,wemainlydiscusstheapproachforpair-wisepedestriansandextendittomorepedestriansinSec-tion4.3.Denotethefeaturesofdetectionwindowwndbyvectorx1

1,containingbothappearanceandpositionin-formation.Denotethelabelofwnd1byy1∈{0,1}.Pedestriandetectionwithadiscriminativemodelaimsatobtainingp(y1|xfor1)foreachwindowwndallsizesofwindows.1inaslidingwin-dowmannerWeconsideran-otherdetectionwindowwnd∈{0,1}.Andwehavethe2withfeaturesxfollowingbymarginalizing2andlabelyy22:

p(y

1|x1,x2)=

p(y1,y2|x1,x2)y2=0,1(1)

=p(y1,y2=1|x1,x2)+p(y1,y2=0|x1,x2),Wheny2=0,wehave

p(y1,y2=0|x1,x2)=p(y1|y2=0,x1)p(y2=0),(2)wherep(y1|y2=0,x1)isobtained0)isfromaconstantthedeeppriormodelforisolatedpedestrians.p(ywhich2=onwnd2beingabackground,isobtainedfromcross-validation.Wheny2=1,wehave

p(y1,y2=1|x1,x2)∝φ(y;x)φp(y;x),

(3)

φ(y;x)in(3)isusedforrecognizingpair-wiseco-existing

pedestriansfrompartdetectionscores,wherex=[xT1xT2]T

,y=1ify1=1andy2=1,otherwisey=0.Bothp(ydeep1|ymodel2=0,xintroduced1,x2)andφ(y;x)areobtainedfromtheinSection4.φtherelativepositionp(y;x)in(3)mod-elsprobabilityforbetweenwndwndφmixturemodel1and(GMM).2.p(y;x)isestimatedfromGaussianAnoverviewofourapproachisgiveninTable1.

4.Themutualvisibilitydeepmodel

Sincethevisibilityrelationshipofpartsbetweenpair-wisepedestriansisdifferentwhenpedestrianshavedifferentrelativepositions,therelativepositionsareclusteredintoKmixturesusingGMM.AndKdeepmodelsaretrainedfortheseKmixtures.Apairofdetectionwindowsare

(a)

(b)

Figure2.(a)Themutualvisibilitydeepmodelusedforinferenceand netuningparametersand(b)thedetailedconnectionandpartsmodelforpedestrian1.

classi edintothekthmixtureandthenthispairareusedbythekthdeepmodelforlearningandinference.Thedifferencesbetweenthetwopedestriansinhorizontallo-cation,verticallocationandsize,denotedby(drandomvariablesintheGMMx,ddistribu-y,ds),areusedasthetionp(dx,dy,d.φs).Positivesamplesisobtainedarefromusedp(fordtrainingp(dx,dy,ds)p(y;x)in(3)x,dy,ds).

4.1.Thedeepmodelattheinferencestage

Fig.2(a)showsthedeepmodelusedattheinferencestage.Fig.2(b)showsthepartsmodelusedforpedestrian1atwindowwnddowwnd1.Thepartsmodelforpedestrian2atwin-2isthesame.AsshowninFig.2(b),thereare3layersofpartswithdifferentsizes.Foreachpedestrian,therearesixsmallpartsatlayer1,sevenmedium-sizedpartsatlayer2andsevenlargepartsatLayer3.Thesixpartsatlayer1areleft-head-shoulder,right-head-shoulder,left-torso,right-torso,left-legandright-leg.Apartatanup-perlayerconsistsofitschildrenatthelowerlayer.Thepartsatthetoplayerarethepossibleocclusionstatuseswithgraycolorindicatingocclusions.

ThedetectionscoresforLlayersaredenotedbys=

[s1T

...sLT]T=γ(x),whereγ(x)isobtainedfrompartdetectors,slforl=1,...,Ldenotesthescoresatlayerl.ForthemodelinFig.2,L=3.Andwehave

sl=[slT1slT2]T,wherethePl

scoresofthetwopedestrians

atlayerlaredenotedbysl1=[s11,1,...,slT

1,Pl]andsl2=

[s12,1,...,slT

2,Pl].ThevisibilitiesofPlpartsaredenotedby hl=[h1,...,hll]Tandspectively.11,1h l2=[h12,...,hll]Tre- hl=[h lT1 ThehThidden1,Pvariablesatlayer,1laredenoted2,P

by

l2

]T.Sinceh lisnotprovidedattrainingstage

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库cvpr2013-Modeling Mutual Visibility Relationship in Pedestri(3)在线全文阅读。

cvpr2013-Modeling Mutual Visibility Relationship in Pedestri(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/jiaoyu/1181745.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: