77范文网 - 专业文章范例文档资料分享平台

储油罐的变位识别与罐容表标定 - 图文

来源:网络收集 时间:2020-06-20 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

储油罐的变位识别与罐容表标定

摘要

本文分别建立了小椭圆型储油罐及实际储油罐的变位识别模型。针对小椭圆型储油罐的变位识别问题,采用积分方法,给出无变位时储油量与油位高度的计算公式并得到正常的罐容表标定。对于小椭圆型储油罐纵向倾斜变位问题,讨论了其截面是三角形和梯形两种情况,利用积分法给出了纵向倾斜变位问题的计算公式,给出了修正后的罐容表标定值,并与正常标定值进行比较。针对实际大储油罐的变位识别问题,给出无变位时储油量与油位高度的计算公式,根据计算公式得到正常罐容表标定值。对于倾斜变位问题,用积分方法在不同油高下分别计算出球冠部分和中间圆柱体部分的油量,并求和给出大储油罐纵向倾斜变位后的修正公式。然后对储油罐横向偏转角度进行分析,给出横向偏转后实际油面高度与正常时油面高度的关系式。最后结合纵向倾斜角度及横向偏转角度参数公式推导得到罐内储油量与油位高度及两个变位参数间的函数式。结合附件二中所给数据,利用非线性最小二乘法通过遍历搜索算法求出纵向倾斜角度及横向偏转角度值,最后利用附件二中的数据对模型的可靠性进行了检验,检验结果表明模型较为合理。

关键词 积分,数值积分,复化梯度法,非线性最小二乘法,罐容表,标定

一、问题的重述

通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,我们可以采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

然而许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需

1

要定期对罐容表进行重新标定。

我们采用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题,并解决以下两个问题。

(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为?=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。

油位注油口 探针 1.2m 出油管 油浮子

1.2m 油

1.78m α 水平线

2.05m0.4m

(b) 小椭圆油罐截面示意图 17cm (a) 小椭圆油罐正面示意图

图4 小椭圆型油罐形状及尺寸示意图

(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度?和横向偏转角度? )之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。

地平线 油位探测装置 油位探针 注检油查口 口 油浮子 出油管 3 m 油位1m 2m 油 6m 图1 储油罐正面示意图

1m 2

二、问题的假设

(1)向罐内注入的油量数都是通过流量计来完成,是准确的;

(2)罐内的储油量只有通过加油机加油流出,并且加油机的计量误差在允许的范围内; (3)不计外部环境的变化对内部油量所产生的影响。 (4)浮标的大小相对于溶剂来说可以忽略。

(5)储油罐中油的密度是均匀的,不考虑水汽、重油等因素的影响。 (6)储油罐的厚度可以忽略。 (7)设注油期间油量无损耗。

(8)忽略出油管、检查口、注油口以及油位探针对油位高度的影响。

部分假设在题中给予说明

(9)在储油罐倾斜的情况下,忽略油浮子高度为0时油所占的体积; (10)在储油罐倾斜的情况下,假设当油浮子高度达到最大后不再进油; (11)油的挥发速度很慢,忽略因油的挥发而造成储油量的减少; (12)储油罐的材料为钢体,忽略因渗出油而造成储油量的减少;

三、问题的分析

问题一是利用小椭圆型储油罐模型研究变位对罐容表的影响。在无变位的情况下,储油罐的储油量就是对小椭圆型储油罐进行积分;在变为后,要分三步计算油的体积,第一步,在油平面未到达右端底部时,可以沿垂直于油面和地面的方向截得三角形切面,以油面到椭圆原点的距离为L,求出三角形面积,然后再积分;第二步,当油平面到达右端底部之后,可以用先前的结果减去虚拟部分的结果;第三步,当油平面上升到左端的上沿后,储油量为总体积减去上部空余部分的体积,空余部分的体积和第一步的算法相同。

问题二是一个求实际储油罐变位参数的问题,由于平位时储油罐内液体的体积是一个比较规则的立体图形,因此可以用三重积分的方法求出平位时不同高度时液体体积的理论值,即罐容表的理论值,然后再利用积分的方法求出罐内液体体积与纵向偏移角度、横向偏移角度的关系,建立一个体积与变位参数的关系模型,用这个关系模型求出的相关数据和题中给出的数据进行对比,利用最小二乘法实际的变位参数。

四、符号说明

符号表示 含义 3

单位 h V0 油位高度 油位高度为h的两端冠球体储油量总和 油位高度为h时圆柱体的储油量 m m3 m3 m3 m V1 V L 油位高度为h时的储油总量 贮油罐中间圆柱形的长度 剩余的符号在解题的过程中说明

五、模型的建立与求解

第(1)题

①建立罐体未变位时罐容表标定值模型

设油位高度为h,截面作对应的面积为S,对应的罐容表的标定值为V

图1-1储油罐横截面坐标系 图1-2整个储存罐的坐标表示 正常时高度是已知的,只需求出截面的储油面积:

V?S?La2b?y2dy?bb2aL?y2b2y?h?b2?b?y?arcsin??bb?22b???2?L?h?b

2aL?h?bb2h?bb2??2?2bh?h?arcsin??b?2224??a?0.89m,b?0.6m,L?2.45m 带入得到体积V的公式:

49*0.86h?0.6h?0.6V?*(*1.2h?h2?0.18asin()?0.09?)

620.6根据此函数可以得到理论值,与数据中的值在同一图中用MATLAB进行拟合,可以

得到图1-3所示图形:

4

无变位时理论值与数据值的对比4500400035003000理论值数据值 容积/L25002000150010005000 0200400600高度/mm80010001200图1-3 无变位是理论值与数据值的对比

②建立罐体变位时罐容表标定值模型

见如图1-4

图1-4 变位时的储存罐的坐标表示 L 表示油平面到椭圆的中心o的距离,L可以为负数; a为长半轴,b为短半轴;

?为倾斜角(4.1o);

5

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库储油罐的变位识别与罐容表标定 - 图文在线全文阅读。

储油罐的变位识别与罐容表标定 - 图文.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/jiaoyu/1111619.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: