y E D C F O A B x
(第24题图)
14.(2010 广东 )如图,平面直角坐标系中有一矩形ABCD(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.
(1)直接写出∠ABE、∠CBD的度数,并求折痕BD所在直线的函数解析式;
(2)过F点作FG⊥x轴,垂足为G,FG的中点为H,若抛物线y?ax?bx?c经过B、H、D三点,求抛物线的函数解析式;
(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PM
2
15.(2010福建 )如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).
⑴△EFG的边长是____(用含有x的代数式表示),当x=2时,点G的位置在_______; ⑵若△EFG与梯形ABCD重叠部分面积是y,求 ①当0<x≤2时,y与x之间的函数关系式; ②当2<x≤6时,y与x之间的函数关系式;
⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.
A D G
16.(2010江西)如图,已知经过原点的抛物线y=-2x+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交与C、D两点,与原抛物线交与点P. (1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理)
(2)在x轴上是否存在两条相等的线段,若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由; (3)△CDP的面积为S,求S关于m的关系式。
y P 2
O C A D x
32
17.(2010 武汉 )如图1,抛物线y1?ax?2ax?b经过点A(-1,0),C(0,
2)两
点,且与x轴的另一交点为点B. (1)求抛物线解析式;
(2)若抛物线的顶点为点M,点P为线段AB上一动点(不与B重合),Q在线段MB上移动,且∠MPQ=45°,设OP=x,MQ=
22y2,求y2于x的函数关系式,并且直接写出
自变量的取值范围;
(3)如图2,在同一平面直角坐标系中,若两条直线x=m,x=n分别与抛物线交于E、G两点,与(2)中的函数图像交于F、H两点,问四边形EFHG能否为平行四边形?若能,求出m、n之间的数量关系;若不能,请说明理由.
图 1
图 2
18.(2010四川 )如图12已知△ABC中,∠ACB=90°以AB 所在直线为x 轴,过c 点的直线为y 轴建立平面直角坐标系.此时,A 点坐标为(一1 , 0), B 点坐标为(4,0 ) (1)试求点C 的坐标
(2)若抛物线y?ax?bx?c过△ABC的三个顶点,求抛物线的解析式.
(3)点D( 1,m )在抛物线上,过点A 的直线y=-x-1 交(2)中的抛物线于点E,那么在x轴上点B 的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE 相似?若存在,求出P点坐标;若不存在,说明理由。
2D
H
G
19.(2010浙江 )如图,已知在直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的
正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D,将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴于E和F. (1)求经过A,B,C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时 S最小,并求出这个最小值.
.
220.(2010江苏 )如图,已知二次函数y?ax?bx?3的图像与x轴相交于点A、C,与y轴相较于点B,A(?94,0),且△AOB∽△BOC。
(1)求C点坐标、∠ABC的度数及二次函数y?ax?bx?3的关系是;
(2)在线段AC上是否存在点M(m,0)。使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由。
2
21.(2010江苏 )如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP-CQ。设AP=x (1)当PQ∥AD时,求x的值;
(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;
(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围。
22.(2010 山东滨州)如图,四边形ABCD是菱形,点D的坐标是(0,3),以点C为顶
点的抛物线
y?ax2?bx?c 恰好经过x轴上A、B两点.
(1)求A、B、C三点的坐标;
(2) 求经过A、B、C三点的的抛物线的解析式;
(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少各单位?
23.(2010湖北荆门)已知一次函数y=二次函数y?12212x?1的图象与x轴交于点A.与y轴交于点B;
12x?1的图象交于B、C两点,与x轴交
x?bx?c图象与一次函数y=
于D、E两点且D点的坐标为(1,0)
(1)求二次函数的解析式;
(2)求四边形BDEF的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,
求出所有的点P,若不存在,请说明理由。
25.(2010 四川成都)在平面直角坐标系xOy中,抛物线y?ax?bx?c与x轴交于
A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(?3,若将经过A、C0),
2两点的直线y?kx?b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线
x??2.
(1)求直线AC及抛物线的函数表达式;
(2)如果P是线段AC上一点,设?ABP、?BPC的面积分别为S?ABP、S?BPC,且
S?ABP:S?BPC?2:3,求点P的坐标;
(3)设⊙Q的半径为l,圆心Q在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐轴同时相切? 26.(2010山东潍坊)如图所示,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴
交于C(0,-3).以AB为直径做⊙M,过抛物线上的一点P作⊙M的切线PD,切点为D,并与⊙M的切线AE相交于点E.连接DM并延长交⊙M于点N,连接AN.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库二次函数难题压轴题中考精选 - 图文(2)在线全文阅读。
相关推荐: