p 真 假 假 假 真 假 假 假 假 q p∨q 真 真 真 真 假 真 假 真 真 假 假 假
(即一假则假) (即一真则真)
一般地,我们规定:
当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题;当p,q两个命题中有一个是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题。 5、例题
例1:将下列命题分别用“且”与“或” 联结成新命题“p∧q” 与“p∨q”的形式,并判断它们的真假。
(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。 (2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分; (3)p:35是15的倍数,q:35是7的倍数. 解:(1)p∧q:平行四边形的对角线互相平分且平行四边形的对角线相等.也可简写成
平行四边形的对角线互相平分且相等.
p∨q: 平行四边形的对角线互相平分或平行四边形的对角线相等. 也可简写成
平行四边形的对角线互相平分或相等.
由于p是真命题,且q也是真命题,所以p∧q是真命题, p∨q也是真命题. (2)p∧q:菱形的对角线互相垂直且菱形的对角线互相平分. 也可简写成
菱形的对角线互相垂直且平分.
p∨q: 菱形的对角线互相垂直或菱形的对角线互相平分. 也可简写成
菱形的对角线互相垂直或平分.
由于p是真命题,且q也是真命题,所以p∧q是真命题, p∨q也是真命题.
(3)p∧q:35是15的倍数且35是7的倍数. 也可简写成
35是15的倍数且是7的倍数.
p∨q: 35是15的倍数或35是7的倍数. 也可简写成
35是15的倍数或是7的倍数.
由于p是假命题, q是真命题,所以p∧q是假命题, p∨q是真命题.
说明,在用"且"或"或"联结新命题时,如果简写,应注意保持命题的意思不变. 例2:选择适当的逻辑联结词“且”或“或”改写下列命题,并判断它们的真假。 (1)1既是奇数,又是素数; (2)2是素数且3是素数; (3)2≤2. 解略.
例3、判断下列命题的真假; (1)6是自然数且是偶数
(2)?是A的子集且是A的真子集;
(3)集合A是A∩B的子集或是A∪B的子集;
(4)周长相等的两个三角形全等或面积相等的两个三角形全等. 解略. 6.练习
P20 练习第1 , 2题 7.课堂总结
(1) 掌握逻辑联结词“或、且”的含义
(2) 正确应用逻辑联结词“或、且”解决问题 (3) 掌握真值表并会应用真值表解决问题
p q P∧q P∨q 真 真 真 假 真 真 真 真 假 假 假 真 假 假 假 假 8.作业:
P20:习题1.3A组第1、2题
1.3.3非
(一)教学目标
1.知识与技能目标:
(1)掌握逻辑联结词“非”的含义
(2)正确应用逻辑联结词“非”解决问题 (3)掌握真值表并会应用真值表解决问题 2.过程与方法目标:
观察和思考中,在解题和证明题中,本节课要特别注重学生思维能力中严密性品质的培养. 3.情感态度价值目标:
激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神. (二)教学重点与难点
重点:通过数学实例,了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容. 难点: 1、正确理解命题 “¬P”真假的规定和判定.
2、简洁、准确地表述命题 “¬P”.
(三)教学过程: 1、思考、分析
问题1:下列各组命题中的两个命题间有什么关系?
(1) ①35能被5整除; ②35不能被5整除;
22
(2) ①方程x+x+1=0有实数根。 ②方程x+x+1=0无实数根。 学生很容易看到,在每组命题中,命题②是命题①的否定。 2、归纳定义
一般地,对一个命题p全盘否定,就得到一个新命题,记作
¬p
读作“非p”或“p的否定”。
3、命题“¬p”与命题p的真假间的关系
命题“¬p”与命题p的真假之间有什么联系?
引导学生分析前面所举例子中命题p与命题¬p的真假性,概括出这两个命题的真假之间的关系的一般规律。
例如:在上面的例子中,第(1)组命题中,命题①是真命题,而命题②是假命题。 第(2)组命题中,命题①是假命题,而命题②是真命题。
由此可以看出,既然命题¬P是命题P的否定,那么¬P与P不能同时为真命题,也不能同时为假命题,也就是说,
若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题; p ¬P 真 假 假 真
4、命题的否定与否命题的区别
让学生思考:命题的否定与原命题的否命题有什么区别?
命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定,因此在解题时应分请命题的条件和结论。 例:如果命题p:5是15的约数,那么 命题¬p:5不是15的约数;
p的否命题:若一个数不是5,则这个数不是15的约数。
显然,命题p为真命题,而命题p的否定¬p与否命题均为假命题。 5.例题分析
例1 写出下表中各给定语的否定语。 若给定语为 等于 大于 是 都是 至多有一至少有个 一个 其否定语分别为 分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”; “是”的否定语是“不是”; “都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”; “至少有一个”的否定语是“一个都没有”; 例2:写出下列命题的否定,判断下列命题的真假 (1)p:y = sinx 是周期函数; (2)p:3<2;
(3)p:空集是集合A的子集。 解略.
6.练习巩固:P20 练习第3题 7.小结
(1)正确理解命题 “¬P”真假的规定和判定. (2)简洁、准确地表述命题 “¬P”. 8.作业 P20:习题1.3A组第3题
1.4全称量词与存在量词
1.4.1全称量词1.4.2存在量词
(一)教学目标
1.知识与技能目标 (1)通过生活和数学中的丰富实例理解全称量词与存在量词的含义,熟悉常见的全称量词和存在量词.
(2)了解含有量词的全称命题和特称命题的含义,并能用数学符号表示含有量词的命题及 判断其命题的真假性. 2.过程与方法目标
使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力. 3.情感态度价值观
通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育. (二)教学重点与难点
重点:理解全称量词与存在量词的意义 难点: 全称命题和特称命题真假的判定. (三)教学过程
1.思考、分析
下列语句是命题吗?假如是命题你能判断它的真假吗? (1)2x+1是整数; (2) x>3;
(3) 如果两个三角形全等,那么它们的对应边相等; (4)平行于同一条直线的两条直线互相平行;
(5)海师附中今年所有高中一年级的学生数学课本都是采用人民教育出版社A版的教科书; (6)所有有中国国籍的人都是黄种人; (7)对所有的x∈R, x>3;
(8)对任意一个x∈Z,2x+1是整数。 1. 推理、判断
(让学生自己表述) (1)、(2)不能判断真假,不是命题。 (3)、(4)是命题且是真命题。
(5)-(8)如果是假,我们只要举出一个反例就行。
注:对于(5)-(8)最好是引导学生将反例用命题的形式写出来。因为这些命题的反例涉及到“存在量词”“特称命题”“全称命题的否定”这些后续内容。
(5)的真假就看命题:海师附中今年存在个别(部分)高一学生数学课本不是采用人民教育出版社A版的教科书;这个命题的真假,该命题为真,所以命题(5)为假;
命题(6)是假命题.事实上,存在一个(个别、部分)有中国国籍的人不是黄种人. 命题(7)是假命题.事实上,存在一个(个别、某些)实数(如x=2), x<3. (至少有一个x∈R, x≤3)
命题(8)是真命题。事实上不存在某个x∈Z,使2x+1不是整数。也可以说命题:存在某个x∈Z使2x+1不是整数,是假命题. 3.发现、归纳
命题(5)-(8)跟命题(3)、(4)有些不同,它们用到 “所有的”“任意一个” 这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“?”
表示,含有全称量词的命题,叫做全称命题。命题(5)-(8)都是全称命题。 通常将含有变量x的语句用p(x),q(x),r(x),??表示,变量x的取值范围用M表示。那么全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:?x?M, p(x),读做“对任意x属于M,有p(x)成立”。
刚才在判断命题(5)-(8)的真假的时候,我们还得出这样一些命题:
,
(5)存在个别高一学生数学课本不是采用人民教育出版社A版的教科书;
,
(6)存在一个(个别、部分)有中国国籍的人不是黄种人.
,
(7) 存在一个(个别、某些)实数x(如x=2),使x≤3.(至少有一个x∈R, x≤3)
,
(8)不存在某个x∈Z使2x+1不是整数. 这些命题用到了“存在一个”“至少有一个”这样的词语,这些词语都是表示整体的一部分的词叫做存在量词。并用符号“?”表示。含有存在量词的命题叫做特称命题(或存在命题)命
,,
题(5)-(8)都是特称命题(存在命题).
特称命题:“存在M中一个x,使p(x)成立”可以用符号简记为:?x?M,p(x)。读做“存在一个x属于M,使p(x)成立”.
全称量词相当于日常语言中“凡”,“所有”,“一切”,“任意一个”等;存在量词相当于日常语言中“存在一个”,“有一个”,“有些”,“至少有一个”,“ 至多有一个”等.
4.练习、感悟
(1)下列全称命题中,真命题是:
A. 所有的素数是奇数; B. ?x?R,(x?1)?0; C.?x?R,x?21?1?2 D.?x?(0,),sinx??2 x2sinx(2)下列特称命题中,假命题是: A.
?x?R,x2?2x?3?0 B.至少有一个x?Z,x能被2和3整除
2C. 存在两个相交平面垂直于同一直线 D.?x?{x|x是无理数},x是有理数. (3)已知:对?x?R,a?x??2?1恒成立,则a的取值范围是 ; x变式:已知:对?x?R,x?ax?1?0恒成立,则a的取值范围是 ; (4)求函数f(x)??cosx?sinx?3的值域;
变式:已知:对?x?R,方程cosx?sinx?3?a?0有解,求a的取值范围. 5.作业、探究
(1)作业:P29习题1.4A组1、2题: 判断下列全称命题的真假:
①末位是o的整数,可以被5整除;
②线段的垂直平分线上的点到这条线段两个端点的距离相等; ③负数的平方是正数;
22
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库选修2-1教案新课标高中数学人教A版选修2-1全套教案(3)在线全文阅读。
相关推荐: