弹簧后,弹簧的最大压缩距离.
分析 这也是一种碰撞问题.碰撞的全过程是指小球刚与弹簧接触直至弹簧被压缩到最大,小球与靶刚好到达共同速度为止,在这过程中,小球和靶组成的系统在水平方向不受外力作用,外力的冲量为零,因此,在此方向动量守恒.但是,仅靠动量守恒定律还不能求出结果来.又考虑到无外力对系统作功,系统无非保守内力作功,故系统的机械能也守恒.应用上述两个守恒定律,并考虑到球与靶具有相同速度时,弹簧被压缩量最大这一条件,即可求解.应用守恒定律求解,可免除碰撞中的许多细节问题.
解 设弹簧的最大压缩量为x0 .小球与靶共同运动的速度为v1 .由动量守恒定律,有
mv??m?m??v1 (1)
又由机械能守恒定律,有
121122 (2) mv??m?m??v1?kx0222由式(1)、(2)可得
x0?mm?v
k?m?m??3 -30 质量为m 的弹丸A,穿过如图所示的摆锤B 后,速率由v 减少到v /2.已知摆锤的质量为m′,摆线长度为l,如果摆锤能在垂直平面内完成一个完全的圆周运动,弹丸速度v的最小值应为多少?
分析 该题可分两个过程分析.首先是弹丸穿越摆锤的过程.就弹丸与摆锤所组成的系统而言,由于穿越过程的时间很短,重力和的张力在水平方向的冲量远小于冲击力的冲量,因此,可认为系统在水平方向不受外力的冲量作用,系统在该方向上满足动量守恒.摆锤在碰撞中获得了一定的速度,因而具有一定的动能,为使摆锤能在垂直平面内作圆周运动,必须使摆锤在最高点处有确定的速率,该速率可由其本身的重力提供圆周运动所需的向心力来确定;
21
与此同时,摆锤在作圆周运动过程中,摆锤与地球组成的系统满足机械能守恒定律,根据两守恒定律即可解出结果.
解 由水平方向的动量守恒定律,有
vmv?m?m?v? (1)
2为使摆锤恰好能在垂直平面内作圆周运动,在最高点时,摆线中的张力FT=0,则
2m?v?hm?g? (2)
l式中v′h 为摆锤在圆周最高点的运动速率.
又摆锤在垂直平面内作圆周运动的过程中,满足机械能守恒定律,故有
112m?v??2m?gl?m?v?h (3) 22解上述三个方程,可得弹丸所需速率的最小值为
v?2m?
m5gl3 -33 如图所示,一质量为m′的物块放置在斜面的最底端A 处,斜面的倾角为α,高度为h,物块与斜面的动摩擦因数为μ,今有一质量为m 的子弹以速度v0 沿水平方向射入物块并留在其中,且使物块沿斜面向上滑动.求物块滑出顶端时的速度大小.
分析 该题可分两个阶段来讨论,首先是子弹和物块的撞击过程,然后是物块(包含子弹)沿斜面向上的滑动过程.在撞击过程中,对物块和子弹组成的系统而言,由于撞击前后的总动量明显是不同的,因此,撞击过程中动量
不守恒.应该注意,不是任何碰撞过程中动量都是守恒的.但是,若取沿斜面的方向,因撞击力(属于内力)远大于子弹的重力P1 和物块的重力P2 在斜面的方向上的分力以及物块所受的摩擦力Ff ,在该方向上动量守恒,由此可得到物块被撞击后的速度.在物块沿斜面上滑的过程中,为解题方便,可重新选择系统(即取子弹、物块和地球为系统),此系统不受外力作用,而非保守内力中仅摩擦力作功,根据系统的功能原理,可解得最终的结果.
解 在子弹与物块的撞击过程中,在沿斜面的方向上,根据动量守恒有
mv0cosα??m?m??v1 (1)
在物块上滑的过程中,若令物块刚滑出斜面顶端时的速度为v2 ,并取A 点的重力势能为零.由系统的功能原理可得
22
?μ?m?m??gcosαh sinα?由式(1)、(2)可得
1122 (2) ?m?m??v2??m?m??gh??m?m??v122?m?v2??v0cosα??2gh?μcotα?1?
?m?m??4 -6 一汽车发动机曲轴的转速在12 s 内由1.2×103 r·min-1均匀的增加到2.7×103 r·min-1.(1) 求曲轴转动的角加速度;(2) 在此时间内,曲轴转了多少转?
分析 这是刚体的运动学问题.刚体定轴转动的运动学规律与质点的运动学规律有类似的关系,本题为匀变速转动.
解 (1) 由于角速度ω=2π n(n 为单位时间内的转数),根据角加速度的定义α?匀变速转动中角加速度为
2dω,在dtα?ω?ω02π?n?n0???13.1rad?s?2 tt(2) 发动机曲轴转过的角度为
1ω?ω0θ?ω0t?αt2?t?π?n?n0?
22在12 s 内曲轴转过的圈数为
θn?n0?t?390圈 2π2?t/η?,式中ω0=9.0 s-1 ,τ4 -7 某种电动机启动后转速随时间变化的关系为ω?ω0?1?eN?=2 s .求:(1) t =6.0 s 时的转速;(2) 角加速度随时间变化的规律;(3) 启动后6.0 s 内转过的圈数.
分析 与质点运动学相似,刚体定轴转动的运动学问题也可分为两类:(1) 由转动的运动方程,通过求导得到角速度、角加速度;(2) 在确定的初始条件下,由角速度、角加速度通过积分得到转动的运动方程.本题由ω=ω(t)出发,分别通过求导和积分得到电动机的角加速度和6.0 s 内转过的圈数.
解 (1) 根据题意中转速随时间的变化关系,将t =6.0 s 代入,即得
ω?ω01?e?t/η?0.95ω0?8.6s?1
(2) 角速度随时间变化的规律为
??α?dωω0?t/η?e?4.5e?t/2rad?s?2 dtη??(3) t =6.0 s 时转过的角度为
θ??ωdt??ω01?e?t/ηdt?36.9rad
0066??则t =6.0 s时电动机转过的圈数
N?θ/2π?5.87圈
23
4 -11 用落体观察法测定飞轮的转动惯量,是将半径为R 的飞轮支承在O点上,然后在绕过飞轮的绳子的一端挂一质量为m 的重物,令重物以初速度为零下落,带动飞轮转动(如图).记下重物下落的距离和时间,就可算出飞轮的转动惯量.试写出它的计算式.(假设轴承间无摩擦).
分析 在运动过程中,飞轮和重物的运动形式是不同的.飞轮作定轴转动,而重物是作落体运动,它们之间有着内在的联系.由于绳子不可伸长,并且质量可以忽略.这样,飞轮的转动惯量,就可根据转动定律和牛顿定律联合来确定,其中重物的加速度,可通过它下落时的匀加速运动规律来确定.
该题也可用功能关系来处理.将飞轮、重物和地球视为系统,绳子张力作用于飞轮、重物的功之和为零,系统的机械能守恒.利用匀加速运动的路程、速度和加速度关系,以及线速度和角速度的关系,代入机械能守恒方程中即可解得. 解1 设绳子的拉力为FT,对飞轮而言,根据转动定律,有
FTR?Jα (1)
而对重物而言,由牛顿定律,有
mg?FT?ma (2)
由于绳子不可伸长,因此,有
a?Rα (3)
重物作匀加速下落,则有
h?由上述各式可解得飞轮的转动惯量为
12at (4) 2?gt2?J?mR??2h?1??
??2解2 根据系统的机械能守恒定律,有
11?mgh?mv2?Jω2?0 (1′)
22而线速度和角速度的关系为
24
v?Rω (2′)
又根据重物作匀加速运动时,有
v?at (3′) v2?2ah (4′)
由上述各式可得
?gt2?J?mR??2h?1??
??2若轴承处存在摩擦,上述测量转动惯量的方法仍可采用.这时,只需通过用两个不同质量的重物做两次测量即可消除摩擦力矩带来的影响.
4 -12 一燃气轮机在试车时,燃气作用在涡轮上的力矩为2.03×03N·m,涡轮的转动惯量为25.0kg·m2 .当轮的转速由2.80×103 r·min-1 增大到1.12×104 r·min-1时,所经历的时间t 为多少?
分析 由于作用在飞轮上的力矩是恒力矩,因此,根据转动定律可知,飞轮的角加速度是一恒量;又由匀变速转动中角加速度与时间的关系,可解出飞轮所经历的时间.该题还可应用角动量定理直接求解.
解1 在匀变速转动中,角加速度α?间
ω?ω0,由转动定律M?Jα,可得飞轮所经历的时tt?ω?ω02πJ?n?n0??10.8s J?MM解2 飞轮在恒外力矩作用下,根据角动量定理,有
?Mdt?J?ω?ω?
00t则 t?ω?ω02πJ?n?n0??10.8s J?MM4 -13 如图(a) 所示,质量m1 =16 kg 的实心圆柱体A,其半径为r =15 cm,可以绕其固定水平轴转动,阻力忽略不计.一条轻的柔绳绕在圆柱体上,其另一端系一个质量m2 =8.0 kg 的物体B.求:(1) 物体B 由静止开始下降1.0 s后的距离;(2) 绳的张力FT .
25
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库北方民族大学物理(上)题库(5)在线全文阅读。
相关推荐: