77范文网 - 专业文章范例文档资料分享平台

北方民族大学物理(上)题库(3)

来源:网络收集 时间:2019-04-05 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

依据质点运动的初始条件,即t0 =0 时v0 =6.0 m·s-1 ,运用分离变量法对上式积分,得

?vv0dv???12.0t?4.0?dt

0tv=6.0+4.0t+6.0t2

又因v=dx /dt,并由质点运动的初始条件:t0 =0 时x0 =5.0 m,对上式分离变量后积分,有

?dx???6.0?4.0t?6.0t?dt

xt2x00x =5.0+6.0t+2.0t2 +2.0t3

2 -15 轻型飞机连同驾驶员总质量为1.0 ×103 kg.飞机以55.0 m·s-1 的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0 ×102 N·s-1 ,空气对飞机升力不计,求:(1) 10s后飞机的速率;(2) 飞机着陆后10s内滑行的距离.

分析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F 为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.

解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有

dv??αt dtvtαtdv???v0?0mdt α2得 v?v0?t

2mF?ma?m因此,飞机着陆10s后的速率为

v =30 m·s-1

t?α2?dx?v?dt ??x0?0?02mt??x故飞机着陆后10s内所滑行的距离

s?x?x0?v0t?α3t?467m 6m2 -19 光滑的水平桌面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0 ,求:(1) t 时刻物体的速率;(2) 当物体速率从v0减少到12 v0时,物体所经历的时间及经过的路程.

11

分析 运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题.物体在作圆周运动的过程中,促使其运动状态发生变化的是圆环内侧对物体的支持力FN 和环与物体之间的摩擦力Ff ,而摩擦力大小与正压力FN′成正比,且FN与FN′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程.

解 (1) 设物体质量为m,取图中所示的自然坐标,按牛顿定律,有

mv2 FN?man?RFf??mat??dv dt由分析中可知,摩擦力的大小Ff=μFN ,由上述各式可得

v2dvμ?? Rdt取初始条件t =0 时v =v 0 ,并对上式进行积分,有

Rvdv?0dt??μ?v0v2

tv?Rv0

R?v0μt(2) 当物体的速率从v 0 减少到1/2v 0时,由上式可得所需的时间为

t??物体在这段时间内所经过的路程

R μv0s??vdt??0t?t?0Rv0dt

R?v0μts?Rln2 μ12

3 -7 质量为m 的物体,由水平面上点O 以初速为v0 抛出,v0与水平面成仰角α.若不计空气阻力,求:(1) 物体从发射点O 到最高点的过程中,重力的冲量;(2) 物体从发射点到落回至同一水平面的过程中,重力的冲量.

分析 重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可.由抛体运动规律可知,物体到达最高点的时间Δt1?v0sinα,物体从出发到落回至同一水平面所需的时g间是到达最高点时间的两倍.这样,按冲量的定义即可求得结果.

另一种解的方法是根据过程的始、末动量,由动量定理求出. 解1 物体从出发到达最高点所需的时间为

Δt1?则物体落回地面的时间为

v0sinα gΔt2?2Δt1?于是,在相应的过程中重力的冲量分别为

v0sinα gI1??Fdt??mgΔt1j??mv0sinαj

Δt1I2??Fdt??mgΔt2j??2mv0sinαj

Δt2解2 根据动量定理,物体由发射点O 运动到点A、B 的过程中,重力的冲量分别为

I1?mvAyj?mv0yj??mv0sinαj I2?mvByj?mv0yj??2mv0sinαj

3 -8 Fx =30+4t(式中Fx 的单位为N,t 的单位为s)的合外力作用在质量m=10 kg 的物体上,试求:(1) 在开始2s 内此力的冲量;(2) 若冲量I =300 N·s,此力作用的时间;(3) 若物体的初速度v1 =10 m·s-1 ,方向与Fx 相同,在t=6.86s时,此物体的速度v2 .

分析 本题可由冲量的定义式I?速度v2.

t2?t1Fdt,求变力的冲量,继而根据动量定理求物体的

13

解 (1) 由分析知

2I???30?4t?dt?30t?2t20?68N?s

02(2) 由I =300 =30t +2t2 ,解此方程可得

t =6.86 s(另一解不合题意已舍去)

(3) 由动量定理,有

I =m v2- m v1

由(2)可知t =6.86 s 时I =300 N·s ,将I、m 及v1代入可得

v2?I?mv1?40m?s?1 m3 -10 质量为m 的小球,在合外力F =-kx 作用下运动,已知x =Acosωt,其中k、ω、A 均为正常量,求在t =0 到t?π 时间内小球动量的增量. 2ω分析 由冲量定义求得力F 的冲量后,根据动量原理,即为动量增量,注意用式分前,应先将式中x 用x =Acosωt代之,方能积分.

解 力F 的冲量为

t2t2π/2ω?t2t1Fdt积

I??Fdt???kxdt???t1t10kAcosωtdt??kA ω即 Δ?mv???kA ω 3 -11 如图所示,在水平地面上,有一横截面S =0.20 m2 的直角弯管,管中有流速为v =3.0 m·s-1 的水通过,求弯管所受力的大小和方向.

分析 对于弯曲部分AB 段内的水而言,由于流速一定,在时间Δt 内,从其一端流入的水量等于从另一端流出的水量.因此,对这部分水来说,在时间Δt 内动量的增量也就是流入与流出水的动量的增量Δp=Δm(vB -vA );此动量的变化是管壁在Δt时间内对其作用冲量I 的结果.依据动量定理可求得该段水受到管壁的冲力F;由牛顿第三定律,自然就得到水流对管壁的作用力F′=-F.

解 在Δt 时间内,从管一端流入(或流出) 水的质量为Δm =ρυSΔt,弯曲部分AB 的水的

14

动量的增量则为

Δp=Δm(vB -vA ) =ρυSΔt (vB -vA )

依据动量定理I =Δp,得到管壁对这部分水的平均冲力

F?从而可得水流对管壁作用力的大小为

I?ρSvΔt?vB?vA? ΔtF???F??2ρSv2??2.5?103N

作用力的方向则沿直角平分线指向弯管外侧.

3 -13 A、B 两船在平静的湖面上平行逆向航行,当两船擦肩相遇时,两船各自向对方平稳地传递50 kg 的重物,结果是A 船停了下来,而B 船以3.4 m·s-1的速度继续向前驶去.A、B 两船原有质量分别为0.5×103 kg 和1.0 ×103 kg,求在传递重物前两船的速度.(忽略水对船的阻力)

分析 由于两船横向传递的速度可略去不计,则对搬出重物后的船A 与从船B 搬入的重物所组成的系统Ⅰ来讲,在水平方向上无外力作用,因此,它们相互作用的过程中应满足动量守恒;同样,对搬出重物后的船B 与从船A 搬入的重物所组成的系统Ⅱ亦是这样.由此,分别列出系统Ⅰ、Ⅱ的动量守恒方程即可解出结果.

解 设A、B两船原有的速度分别以vA 、vB 表示,传递重物后船的速度分别以vA′ 、vB′ 表示,被搬运重物的质量以m 表示.分别对上述系统Ⅰ、Ⅱ应用动量守恒定律,则有

?mA?m?vA?mvB?mAv?A (1)

?mB?m?vB?mvA?mBv?B? (2)

由题意知vA′ =0, vB′ =3.4 m·s-1 代入数据后,可解得

vA??mBmv?B??0.40m?s?1 2?mB?m??mA?m??m?3.6m?s?1

?mA?m?mBv?BvB??mA?m??mB?m??m2动量守恒,也可列出相对应的方程求解.

也可以选择不同的系统,例如,把A、B 两船(包括传递的物体在内)视为系统,同样能满足 3 -17 质量为m 的质点在外力F 的作用下沿Ox 轴运动,已知t=0 时质点位于原点,且初始速度为零.设外力F 随距离线性地减小,且x =0 时,F =F0 ;当x =L 时,F =0.试求质点从x =0 处运动到x =L 处的过程中力F 对质点所作功和质点在x =L 处的速率.

分析 由题意知质点是在变力作用下运动,因此要先找到力F 与位置x 的关系,由题给条件知F?F0?LF0x.则该力作的功可用式?Fdx 计算,然后由动能定理求质点速率.

0LF解 由分析知F?F0?0x, 则在x =0 到x =L 过程中作功,

LL?FW???F0?00L?FL?x?dx?0

2? 15

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库北方民族大学物理(上)题库(3)在线全文阅读。

北方民族大学物理(上)题库(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/573548.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: