答案及评分标准
一、选择题(本题共32分,每小题4分) 题号 答案 1 D 2 C 3 A 4 B 5 D 6 B 7 C 8 C 二、填空题(本题共16分,每小题4分)
题号 答案 9 10 2 11 4 12 (x?3)?1 2(3,1) (2n?1,n) 三、解答题(本题共30分,每小题5分) 13.解:原式=5?1?6?2?22…………………………………………………………4分 2 =4?2.…………………………………………………………………… 5分 14.解:原式=x(x2?4x?4)?x2(x?6)?3
=x3?4x2?4x?x3?6x2?3
=2x2?4x?3.………………………..….….….….….…………………… 3分
∵ x2?2x?4?0,
2 ∴ x?2x?4. ………………………………………………………………… 4分
2 ∴ 原式=2(x?2x)?3?5. ….……………………………………………………5分
15.(1)证明:如图1.
∵ ∠BAF=∠CAE,
∴ ?BAF??CAF??CAE??CAF.
∴ ?BAC??DAE. ………………… 1分 在△ABC和△ADE中,
AEGFDCB??B??D,? ?AB?AD,
??BAC??DAE,?图1
∴ △ABC≌△ADE. ……………………………………………………… 3分 ∴ BC=DE. ………………………………………………………………… 4分
- 11 -
(2)∠DGB的度数为67?.……………………………………………………………… 5分 16.解:(1)∵关于x的一元二次方程(m +1)x2 + 2mx + m ? 3 = 0 有两个不相等的实数根,
∴ m?1?0且??0.
∵ ??(2m)2?4(m?1)(m?3)?4(2m?3),
∴ 2m?3?0. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分
解得 m>?3. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 23且m ? ?1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 3分 2 ∴ m的取值范围是 m>?(2)在m>?3且m ? ?1的范围内,最小奇数m为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 2此时,方程化为x2?x?1?0. ∵ ??b2?4ac?12?4?1?(?1)?5, ∴ x??1?5?1?5. ?2?12?1?5?1?5∴ 方程的根为 x1?, x2? .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分
22DFC17. (1)证明:如图2.
∵ 四边形ABCD是平行四边形,
∴ AB∥CD且AB=CD. ﹍﹍﹍﹍1分 ∵ 点E,F分别是AB,CD的中点, ∴ AE?AGEB图2
11AB,DF?CD. 22 ∴ AE=DF. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 2分 ∴ 四边形AEFD是平行四边形. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分 (2)解:过点D作DG⊥AB于点G. ∵ AB=2AD=4,
∴ AD=2. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 在Rt△AGD中,∵?AGD?90?,?A?60?, AD=2, ∴ AG?AD?cos60??1,DG?AD?sin60??3. ∴ BG?AB?AG?3.
在Rt△DGB中,∵?DGB?90?,DG?3,BG?3,
- 12 -
∴DB?DG2?BG2?3?9?23. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 18.解:(1)300; ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 (2)
2;﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 5 (3)1750 . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 四、解答题(本题共20分,每小题5分)
19.解:(1)当MN⊥AC时,从N到M小区铺设的管道最短.(如图3)﹍﹍﹍﹍﹍﹍ 1分 (2) ∵ ?MAC=60??30?=30?,?ACM=30?+30?=60?,﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 ∴ ?AMC=180??30??60?=90?. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 3分 在Rt△AMC中,∵?AMC=90?,?MAC=30?,AC=2000,
3?10003(米). ﹍﹍﹍﹍﹍﹍﹍﹍4分 2AN北 在Rt△AMN中,∵ ?ANM=90?,cos30?=,
AM ∴ AM?AC?cos?MAC?2000?3 ∴ AN=AM?cos30?=10003?=1500(米).
2M北60°………………………………………… 5分
答:∠AMC等于90?,AN的长为1500米. 20. 解:(1)根据题意得A(6,0),B(0,8).(如图4)
南西60°30°NC南东A东图3 在Rt△OAB中,?AOB=90?,OA=6,OB=8, ∴ AB?62?82?10.﹍﹍﹍﹍﹍﹍﹍ 1分 ∵ △DAB沿直线AD折叠后的对应三角形为△DAC, ∴ AC=AB=10.
∴ OC?OA?AC?OA?AB?16. ∵ 点C在x轴的正半轴上,
∴ 点C的坐标为C(16,0).﹍﹍﹍﹍﹍ 2分 (2)设点D的坐标为D(0,y).(y<0) 由题意可知CD=BD,CD2?BD2. 由勾股定理得162?y2?(8?y)2. 解得y??12.
∴ 点D的坐标为D(0,?12).﹍﹍﹍﹍﹍3分 可设直线CD的解析式为 y?kx?12.(k ? 0)
yBOAD图4 Cx - 13 -
∵ 点C(16,0)在直线y?kx?12上,
∴ 16k?12?0. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 解得k?3. 43x?12.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 4DEBOCP∴ 直线CD的解析式为y?21.(1)证明:连结AO,AC.(如图5) ∵ BC是⊙O的直径,
A ∴ ?BAC??CAD?90?.﹍﹍﹍﹍﹍1分 ∵ E是CD的中点, ∴ CE?DE?AE. ∴ ?ECA??EAC. ∵ OA=OC, ∴ ?OAC??OCA. ∵ CD是⊙O的切线,
图5 ∴ CD⊥OC. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 ∴ ?ECA??OCA?90?.
∴ ?EAC??OAC?90?. ∴ OA⊥AP.
∵ A是⊙O上一点,
∴ AP是⊙O的切线. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分 (2) 解:由(1)知OA⊥AP.
在Rt△OAP中,∵?OAP?90?,OC=CP=OA,即OP=2OA,
∴ sinP?OA1? OP2.
∴ ?P?30?. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 ∴ ?AOP?60?. ∵ OC=OA, ∴ ?ACO?60?.
在Rt△BAC中,∵?BAC?90?,AB=33,?ACO?60?,
- 14 -
∴ AC?AB33??3.
tan?ACOtan60? 又∵ 在Rt△ACD中,?CAD?90?,?ACD?90???ACO?30?, ∴ CD?AC3??23. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分
cos?ACDcos30?22.解:(1) 如图所示,答案不唯一. 画出△D1BC,△D2BC,△D3BC,△D4BC,△D5BC中
的一个即可.(将BC的平行线l画在直线BC下方对称位置所画出的三角形亦可)
1 D 3 D 5 D 2 A D 4 Dl﹍﹍﹍﹍﹍﹍﹍ 2分
(2) 如图所示,答案不唯一. (在直线D1D2上取其他
符合要求的点,或将BC的平行线画在直线BC 下方对称位置所画出的三角形亦可)
﹍﹍﹍﹍﹍﹍﹍﹍﹍4分
(3) 如图所示(答案不唯一).
MAEBCBCD1AD2N
BDC﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分
如上图所示的四边形ABDE的画法说明:(1)在线段BC上任取一点D(D不为BC的中点),连结AD;(2)画出线段AD的垂直平分线MN;(3)画出点C关于直线MN的对称点E,连结DE,AE. 则四边形ABDE即为所求.
五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)由题意得A,C两点的坐标分别为A(1,k1),C(1,k2).(如图6)
﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分 ∵ k1?0,k2?0,
- 15 -
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库北京市西城区2012年中考二模数学试题(含答案)(3)在线全文阅读。
相关推荐: