位是“百”,“千位”上的计数单位是“千”,“万位”上的计数单位是“万”等等。所以在读数时先读数字再读计数单位。 2.自然数知识扩展:
自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论:自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。一定是整数。用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始(包括0),一个接一个,组成一个无穷的集体。
3.角的其他分类:
平角:等于180°的角叫做平角。 优角:大于180°小于360°叫优角。
劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。 周角:等于360°的角叫做周角。
负角:按照顺时针方向旋转而成的角叫做负角。 正角:逆时针旋转的角为正角。 0角:等于零度的角。
余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)。 4.平行线的性质:
(1)两条直线平行,同旁内角互补。 (2)两条直线平行,内错角相等。 (3)两条直线平行,同位角相等。 5.平行线的判定(同一平面内): (1)同旁内角互补,两直线平行。 (2)内错角相等,两直线平行。 (3)同位角相等,两直线平行。
(4)如果两条直线同时与第三条直线平行,那么这两条直线互相平行。 (5)如果两条直线同时垂直于第三条直线,那么这两条直线互相平行。 6.垂线性质:
(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。 (3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
小学数学知识点总结-人教版四年级下册
一、学习目标:
1.进一步掌握含有同一级运算的运算顺序;
2.通过具体的活动,认识方向与距离对确定位置的作用;发展空间观念;
3.能运用运算定律进行一些简便运算;培养根据具体情况,选择算法的意识与能力,发展思维的灵活性;
4.了解小数的产生;理解小数的意义; 5.掌握小数的计算单位及单位间的进率;
6.理解三角形的意义,掌握三角形的特征和特性;理解三角形三边不等的关系; 7.理解掌握小数加、减法的方法;培养计算能力;
8.探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。 二、学习难点:
1.能根据任意方向和距离确定物体的位置;对任意角度具体方向的准确描述; 2.理解和抽象小数的意义;抽象小数的意义;
3.掌握三角形的特性;懂得判断三角形三条线段能否构成一个三角形的方法,并能用于解决有关的问题;
4.计算方法;退位减法;
5.探究和理解乘法交换律、结合律。 三、知识点概括总结: 1.整数加法:
(1)把两个数合并成一个数的运算叫做加法。
(2)在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。 (3)加数+加数=和,一个加数=和-另一个加数。 2.整数减法:
(1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
(2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。 (3)加法和减法互为逆运算。 3.整数乘法:
(1)求几个相同加数的和的简便运算叫做乘法。
(2)在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。 (3)在乘法里,0和任何数相乘都得0。 (4)1和任何数相乘都的任何数。
(5)一个因数×一个因数=积;一个因数=积÷另一个因数。 4.整数除法:
(1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
(2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。 (3)乘法和除法互为逆运算。
(4)在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个
确定的商。
(5)被除数÷除数=商,除数=被除数÷商被除数=商×除数。
5.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。 6.整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
7.整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
8.整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。 9.运算顺序:
(1)小数、分数、整数:小数四则运算的运算顺序和整数四则运算顺序相同;分数四则运算的运算顺序和整数四则运算顺序相同。
(2)没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。 (3)有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。 (4)第一级运算:加法和减法叫做第一级运算。 (5)第二级运算:乘法和除法叫做第二级运算。 10.加法交换律:
加法交换律的概念为:两个加数交换位置,和不变。 字母公式:a+b+c=(b+a)+c 11.加法结合律:
加法结合律的概念为:先把前两个数相加,或者先把后两个数相加,和不变。 字母公式:a+b+c=a+(b+c) 12.乘法交换律:
乘法交换律的概念为:两个因数交换位置,积不变。 字母公式:a×b=b×a 13.乘法结合律:
乘法结合律的概念为:先乘前两个数,或者先乘后两个数,积不变。 字母公式:a×b×c=a×(b×c) 14.乘法分配律:
乘法分配律的概念为:两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。 字母公式:(a+b)×c=a×c+b×c
15.小数:小数由整数部分、小数部分和小数点组成。
当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数,小数是十进制分数的一种特殊表现形式。
16.小数基本性质:小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。
17.小数的写法:整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。 18.小数的读法:
一种是按照分数的读法来读.带小数的整数部分按整数读法读;小数部分按分数读法读,例如:0.38读作百分之三十八,14.56读作十四又百分之五十六。
另一种读法,整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个0.例如:0.45读作零点四五;56.032读作五十六点零三二;1.0005读作一点零零零五。
19.小数的比较:小数大小的比较方法与整数基本相同,即从高位起,依次把相同数位上的数加以比较。
因此,比较两个小数的大小,先看它们的整数部分,整数部分大的那个数大;如果整数部分相同,十分位上的数大的那个数大;如果十分位上的数也相同,百分位上的数大的那个数大; 20.小数的性质:
(1)在小数的末尾添上零或去掉零,小数的大小数不变。
(2)小数点移动会引起小数大小发生变化.把小数点分别向右移动一位、二位、三位…位,则小数的值分别扩大10倍、100倍、1000倍……
如果把小数点分别向左移动一位、二位、三位…则小数的值分别缩小到原来的十分之一、百分之一、千分之一…
21.小数的近似值:保留小数:按要求在舍去部分最高位进行四舍五入运算。
22.小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。 23.小数减法:小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
24.三角形:由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。
25.生活中的三角形物品:雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。 26.三角形中的线段:
(1)中线:顶点与对边中点的连线,平分三角形的面积。
(2)高:从三角形的一个顶点(三角形任意两条边的交点)向其对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高。
(3)角平分线:平分三角形的其中一个角的线段叫做三角形的角平分线,它到两边距离相等。(注:一个角的平分线是射线,平分线的所在直线是这个角的对称轴) (4)中位线:任意两边中点的连线。
27.三角形为什么具有稳定性:任取三角形两条边,则两条边的非公共端点被第三条边连接 ∵第三条边不可伸缩或弯折 ∴两端点距离固定 ∴这两条边的夹角固定 ∵这两条边是任取的
∴三角形三个角都固定,进而将三角形固定 ∴三角形有稳定性
小学数学知识点总结-人教版五年级上册
一、学习目标:
1.探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释; 2.会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力; 3.理解用字母表示数的意义和作用; 4.理解简易方程的意思及其解法;
5.在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。 二、学习难点:
1.能正确进行乘号的简写,略写;小数乘法的计算法则;
2.小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足; 3.除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理; 4.构建初步的空间想象力; 5.用字母表示数的意义和作用; 6.多边形面积的计算。 三、知识点概念总结:
1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
2.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
3.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
4.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
5.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
6.积的近似数:四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。 7.数的互化: (1)小数化成分数
原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。 (2)分数化成小数
用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
(3)化有限小数
一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。 (4)小数化成百分数
只要把小数点向右移动两位,同时在后面添上百分号。 (5)百分数化成小数
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库人教版小学数学知识点总结(6年级全) - 图文(6)在线全文阅读。
相关推荐: