5. 当
x?x0?l2(x)?(x?x0)(x?x1)(x?x3)(x2?x0)(x2?x1)(x2?x3)
4?7?h3 时,取得最大值
max|l2(x)|?10?77x0?x?x327 .
k6. i) 对f(x)?x,(k?0,1,?,n)在x0,x1,?,xn处进行n次拉格朗日插值,则有
xk?Pn(x)?Rn(x)
由于f(n?1)??lj(x)xkj?i?0nn1f(n?1)(?)(x?x0)?(x?xn)(n?1)!
jk(x)xkj?x. kg(x)?(x?t),在x0,x1,?,xn处进行n次拉格朗日插值,有 ii) 构造函数
Ln(x)??(xj?t)klj(x)i?0k(?)?0,故有i?0?ln.
g(n?1)(?)n(x?t)?Ln(x)?(x?xj)?(n?1)!j?0插值余项为 ,
(n?1)(?)?0,(k?1,2,?,n).故有 由于 gn(x?t)?Ln(x)??(xj?t)klj(x).ki?0
令t?x,即得
?(xi?0nj?t)klj(x)?0.
7. 以a, b两点为插值节点作f(x)的一次插值多项式
f(b)?f(a)L1(x)?f(a)?(x?a)b?a,
1f(x)?L1(x)?f??(?)(x?a)(x?b),??[a,b]2据余项定理,,
由于f(a)?f(b)?0,故
|f(x)?L1(x)|?|f(x)|?11max|f??(x)|max|(x?a)(x?b)|?(b?a)2max|f??(x)|.a?x?ba?x?b2a?x?b8
8. 截断误差
R2(x)?1?e(x?x0)(x?x1)(x?x2),??[?4,4].6
x?x1?3hx?x?h,x?x?h,01213其中 则时取得最大值 2max|(x?x0)(x?x1)(x?x2)|?3?h3?4?x?49 .
12|R2(x)|?e4?(3?h3)?10?6,69由题意,
所以,h?0.006.
n?1n2n?2n?1n?1nn9. ?yn?2?2, ?yn?(2?2)?(2?2)?2, 则可得
?4yn??2(?2yn)?2n.
?yn?2n?1/2?2n?1/2, ?2yn?(2n?1?2n)?(2n?2n?1)?2n?1,则可得 10. 数学归纳法证
当k?1时,?f(x)?f(x?h)?f(x)为m-1次多项式;
k?f(x)(0?k?m)是m-k 次多项式,设为g(x),则 假设
?4yn??2(?2yn)?2n?2.
?k?1f(x)?g(x?h)?g(x)为m-(k+1)次多项式,得证。
11. 右?fk(gk?1?gk)?gk?1(fk?1?fk)?fk?1gk?1?fkgk?左 12.
?fk?0n?1k?gk?f0g1?f0g0?f1g2?f1g1???fn?1gn?fn?1gn?1,
?gk?0n?1k?1?fk?f1g1?f0g1?f2g2?f1g2???fngn?fn?1gn.2j
13. j?0
?(y2?y1)?(y1?y0)?(y3?y2)?(y2?y1)???(yn?1?yn)?(yn?yn?1) ?(yn?1?yn)?(y1?y0)??yn??y0 .
14. 由于x1,x2,?,xn是f(x)的n个互异的零点,所以
f(x)?a0(x?x1)(x?x2)?(x?xn)
?a0?(x?xi)?a0(x?xj)?(x?xi),i?1i?1i?jnn??yn?1对f(x)求导得
?n?nf?(x)?a0??(x?xi)?(x?xj)(?(x?xi))???i?0?i?1?i?j?, i?j??f?(xj)?a0?(xj?xi)n则
i?1i?j,
?j?1n1?f?(xj)a0xkj?j?1nxkj?(xi?1i?jn.?xi)
jkg(x)?x,则 k记
由以上两式得
g(n?1)?0,0?k?n?2,(x)???(n?1)!,k?n?1.
?j?1n1?f?(xj)a0xkj?j?1ngk(xj)?(xi?1i?jn?j?xi)1gk[x1,x2,?,xn]a0
(n?1)(?)?0,0?k?n?2,1gk????1a0(n?1)!?a0,k?n?1. nF(xj)F[x0,x1,?,xn]??j?0(xj?x0)?(xj?xj?1)(xj?xj?1)?(xj?xn) 15. i)
nc?f(xj)???c?f[x0,x1,?,xn](x?x)?(x?x)(x?x)?(x?x)j?0j0jj?1jj?1jn.
ii) 证明同上。
f(7)(?)7!f[2,2,?,2]???1;7!7!16.
017f(8)(?)f[2,2,?,2]??0.7!
???RR(x)?f(x)?p(x)?0,jj17. 3j 3(xj)?f(xj)?p(xj)?0,j?k,k?1.
即xk,xk?1均为R3(x)的二重零点。因而有形式:
018R3(x)?K(x)(x?xk)2(x?xk?1)2.
22?(t)?f(t)?p(t)?K(x)(t?x)(t?x). kk?1作辅助函数
则 ?(xk)?0,?(x)?0,?(xk?1)?0,??(xk)?0,??(xk?1)?0.
由罗尔定理,存在?1?(xk,x),?2?(x,xk?1),使得
??(?1)?0,??(?2)?0.
类似再用三次罗尔定理,存在??(?1,?2)?(xk,xk?1),使得
?(4)(?)?0, 又 ?(4)(t)?f(4)(t)?4!K(x),
(4)K(x)?f(?)4!, 可得
(4)22R(x)?f(?)(x?x)(x?x)4!.,??(xk,xk?1). kk?1即 318. 采用牛顿插值,作均差表:
xi f(xi) 一阶均差 二阶均差 0 0 1 1 1 2 1 0 -1/2 p(x)?p(x0)?(x?x0)f[x0,x1]?(x?x0)(x?x1)f[x0,x1,x2]
?(A?Bx)(x?x0)(x?x1)(x?x2)
?0?x?x(x?1)(?1/2)?(A?Bx)x(x?1)(x?2)
31A??,B?,44 又由 p?(0)?0,p?(1)?1, 得
x2p(x)?(x?3)2.4所以 b?ah?,xk?a?kh.n19. 记 则
x?xi?1x?xi?f(xi??1),x?[xi,xi?1].xi?xi?1xi?1?xi
因为f(x)?C[a,b],所以f(x)在[a,b]上一致连续。
b?ah???n?Nn当时,,此时有
max|f(x)??n(x)|?maxmax|f(x)??n(x)|a?x?b0?i?n?1xi?x?xi?1
?x?xx?xi??maxmaxf(x)??f(xi)i?1?f(xi?1)?0?i?n?1xi?x?xi?1x?xx?xi?1ii?1i??
x?xx?xi?maxmax[f(x)?f(xi)]i?1?[f(x)?f(xi?1)]0?i?n?1xi?x?xi?1xi?1?xixi?1?xi
?n(x)?f(xi)?maxmax?0?i?n?1xi?x?xi?1xi?1?xx?xi????.xi?1?xixi?1?xi
由定义知当n??时,?n(x)在[a,b]上一致收敛于f(x)。 20. Ih(x)在每个小区间[xk,xk?1]上表示为
x?xk?1x?xkfk?fk?1,(xk?x?xk?1).xk?xk?1xk?1?xk
计算各值的C程序如下: #include#includeloat f(float x)
{ return(1/(1+x*x)); }
float I(float x,float a,float b) {
return((x-b)/(a-b)*f(a)+(x-a)/(b-a)*f(b)); }
void main() { int i;
float x[11],xc,xx; x[0]=-5;
printf( for(i=1;i<=10;i++) { x[i]=x[i-1]+1;
printf( }
for(i=0;i<10;i++)
Ih(x)?
{ xc=(x[i]+x[i+1])/2; I(xc,x[i],x[i+1]);
printf( }
for(i=0;i<10;i++) { xx=(x[i]+x[i+1])/2; f(xx);
printf( } }
21. Ih(x)在每个小区间[xk,xk?1]上为
Ih(x)?x?xk?12x?xk2xk?xk?1?(xk?1?xk)x?xkxk?1.xk?xk?1xk?1?xk
2(xk?1?xk)2h2|R(x)|?|Ih(x)?f(x)|?|x?(xk?1?xk)x?xkxk?1|??.44
322. f?(x)?4x, 则Ih(x)在每个小区间[xk,xk?1]上表示为
?x?xk?1?Ih(x)???x?x??k?1??k22?x?xk?1?2??xk?1?xk??4?x?xk??xk???x?xk??k?12????2?x?xk?1?4??1?2???xk?1x?xkk?1???x?xk?1??x?xk?33????4??(x?x)x?4?(x?x)xkkk?1k?1.?x?x??x?x?k?1?k??k?k?1|R(x)|?|f(4)(?)(x?xk)2(x?xk?1)2/4!|
xk?1?xkh42xk?1?xk2?4!?(?xk)(?xk?1)4!?.2216
23. h1?x2?x1?0.05, h2?x3?x2?0.09,
h3?x4?x3?0.06, h4?x5?x4?0.08.
hi?1?i?hi?hi?1
?yi?1?yiyi?yi?1?6???i????h?hhhii?1i?1i??
则三次样条插值函数表达式为
mmymymSi(x)?i?1(xi?x)3?i(x?xi?1)3?(i?1?i?1hi)(xi?x)?(i?ihi)(x?xi?1)6hi6hihi6hi6i) 由S?(0.25)?1.0000,S?(0.53)?0.6868,得
?1?0.6429,?2?0.4,?3?0.5714
?0?6(f[x0,x1]?1)??0.276,?1??4.3157,?2??3.264,?3??2.43
?4?6(0.6868?f[x3,x4])??0.1692 关于m0,m1,m2,m3,m4的方程组为
2f(x)?C[a,b],所以 24. i) 因为
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库长沙理工大学数值分析习题集及答案(5)在线全文阅读。
相关推荐: