(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.
(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何
第5页(共24页)
等量关系?针对小华提出的问题,请你写出结论,不用证明.
26.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB. (1)求抛物线的解析式;
(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.
第6页(共24页)
2017年山东省临沂市中考数学试卷
参考答案与试题解析
一、选择题(本大题共14小题,每小题3分,共42分) 1.﹣A.
的相反数是( ) B.﹣
C.2017
D.﹣2017
【考点】14:相反数.
【分析】直接利用相反数的定义分析得出答案. 【解答】解:﹣
的相反数是:
.
故选:A.
2.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )
A.50° B.60° C.70° D.80°
【考点】JA:平行线的性质;IL:余角和补角.
【分析】首先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.
【解答】解:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°, ∴∠BEF=∠1+∠F=50°, ∵AB∥CD,
∴∠2=∠BEF=50°, 故选A.
3.下列计算正确的是( )
A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4 C.a2?a3=a6 D.(ab2)2=a2b4
【考点】47:幂的乘方与积的乘方;44:整式的加减;46:同底数幂的乘法.
第7页(共24页)
【分析】根据去括号、同底数幂的乘法底数不变指数相加,积的乘方,可得答案.
【解答】解:A、括号前是负号,去括号全变号,故A不符合题意; B、不是同底数幂的乘法指数不能相加,故B不符合题意; C、同底数幂的乘法底数不变指数相加,故C不符合题意; D、积的乘方等于乘方的积,故D符合题意; 故选:D.
4.不等式组 中,不等式①和②的解集在数轴上表示正确的是( )
A. B.
C. D.
【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解不等式①,得:x<1, 解不等式②,得:x≥﹣3,
则不等式组的解集为﹣3≤x<1, 故选:B.
5.如图所示的几何体是由五个小正方体组成的,它的左视图是( )
A. B. C. D.
【考点】U2:简单组合体的三视图.
【分析】根据三视图定义分别作出三视图即可判断. 【解答】解:该几何体的三视图如下: 主视图:
;俯视图:
;左视图:
,
故选:D.
6.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是( )
第8页(共24页)
A. B. C. D.
【考点】X6:列表法与树状图法.
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案. 【解答】解:画树状图得:
∵共有9种等可能的结果,小华获胜的情况数是3种, ∴小华获胜的概率是: =.
故选C.
7.一个多边形的内角和是外角和的2倍,则这个多边形是( ) A.四边形 B.五边形 C.六边形 D.八边形 【考点】L3:多边形内角与外角.
【分析】此题可以利用多边形的外角和和内角和定理求解. 【解答】解:设所求正n边形边数为n,由题意得 (n﹣2)?180°=360°×2 解得n=6.
则这个多边形是六边形. 故选:C.
8.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是( ) A.
=
B.
=
C.
=
D.
=
【考点】B6:由实际问题抽象出分式方程.
【分析】根据甲乙的效率,可设未知数,根据甲乙的工作时间,可列方程. 【解答】解:设乙每小时做x个,甲每小时做(x+6)个, 根据甲做90个所用时间与乙做60个所用时间相等,得
=
,
故选:B.
9.某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示: 部门 人数 每人创年利润(万元) A 1 10 第9页(共24页)
B 3 8 C 7 5 D 4 3 这15名员工每人所创年利润的众数、中位数分别是( ) A.10,5 B.7,8 C.5,6.5 D.5,5 【考点】W5:众数;W4:中位数. 【分析】根据表格中的数据可以将这组数据按照从小到大的顺序排列起来,从而可以找到这组数据的中位数和众数. 【解答】解:由题意可得,
这15名员工的每人创年利润为:10、8、8、8、5、5、5、5、5、5、5、3、3、3、3,
∴这组数据的众数是5,中位数是5, 故选D.
10.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是( )
A.2 B.﹣π C.1 D. +π
【考点】MC:切线的性质;MO:扇形面积的计算.
【分析】设AC交⊙O于D,连结BD,先根据圆周角定理得到∠ADB=90°,则可判断△ADB、△BDC都是等腰直角三角形,所以AD=BD=CD=
AB=
,然后利
用弓形AD的面积等于弓形BD的面积得到阴影部分的面积=S△BTD. 【解答】解:∵BT是⊙O的切线; 设AT交⊙O于D,连结BD, ∵AB是⊙O的直径, ∴∠ADB=90°, 而∠ATB=45°,
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说中考初中2017年山东省临沂市中考数学试卷(含答案解析版)(2)在线全文阅读。
相关推荐: