∵C(,0),D(0,1),
,
∴∠DOC=90°,OD=1,OC=∴∠DCO=30°, ∴∠OBD=30°, 故选:B.
【点评】此题考查圆周角定理,关键是利用三角函数得出∠DCO=30°.
第11页(共30页)
10.(3.00分)(2018?白银)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
A.①②④ B.①②⑤ C.②③④ D.③④⑤
【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0. 【解答】解:①∵对称轴在y轴右侧, ∴a、b异号, ∴ab<0,故正确;
②∵对称轴x=﹣=1,
∴2a+b=0;故正确;
③∵2a+b=0, ∴b=﹣2a,
∵当x=﹣1时,y=a﹣b+c<0, ∴a﹣(﹣2a)+c=3a+c<0,故错误;
④根据图示知,当m=1时,有最大值; 当m≠1时,有am2+bm+c≤a+b+c,
第12页(共30页)
所以a+b≥m(am+b)(m为实数). 故正确.
⑤如图,当﹣1<x<3时,y不只是大于0. 故错误. 故选:A.
【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).
二、填空题:本大题共8小题,每小题3分,共24分.
11.(3.00分)(2018?白银)计算:2sin30°+(﹣1)2018﹣()﹣1= 0 . 【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题. 【解答】解:2sin30°+(﹣1)2018﹣()﹣1 =2×+1﹣2 =1+1﹣2 =0,
故答案为:0.
【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题
第13页(共30页)
的关键是明确它们各自的计算方法.
12.(3.00分)(2018?白银)使得代数式
有意义的x的取值范围是 x>3 .
【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数. 【解答】解:∵代数式∴x﹣3>0, ∴x>3,
∴x的取值范围是x>3, 故答案为:x>3.
【点评】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.
13.(3.00分)(2018?白银)若正多边形的内角和是1080°,则该正多边形的边数是 8 .
【分析】n边形的内角和是(n﹣2)?180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数. 【解答】解:根据n边形的内角和公式,得 (n﹣2)?180=1080, 解得n=8.
∴这个多边形的边数是8. 故答案为:8.
【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
14.(3.00分)(2018?白银)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 108 .
有意义,
第14页(共30页)
【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.
【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,
所以其侧面积为3×6×6=108, 故答案为:108.
【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.
15.(3.00分)(2018?白银)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c= 7 .
【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.
【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0, ∴a﹣7=0,b﹣1=0, 解得a=7,b=1, ∵7﹣1=6,7+1=8, ∴6<c<8, 又∵c为奇数, ∴c=7, 故答案是:7.
第15页(共30页)
【点评】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.
16.(3.00分)(2018?白银)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组
的解集为 ﹣2<x<2 .
【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可. 【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4), ∴﹣4=﹣n﹣2,解得n=2, ∴P(2,﹣4),
又∵y=﹣x﹣2与x轴的交点是(﹣2,0),
∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2. 故答案为﹣2<x<2.
【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.
17.(3.00分)(2018?白银)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为 πa .
第16页(共30页)
【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出
×3=πa.
【解答】解:如图.∵△ABC是等边三角形, ∴∠A=∠B=∠C=60°,AB=BC=CA=a, ∴
的长=
的长=
的长=
=
,
的长=
的长=
的长=
=
,那么勒洛三角形的周长为
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说中考初中2018年甘肃省白银市中考数学试卷(3)在线全文阅读。
相关推荐: