2018年台湾省中考数学试卷参考答案与试题解析
第一部分:选择题(第1~26题)
1.(2018·台湾·分)下列选项中的图形有一个为轴对称图形,判断此形为何?( )
A. B. C. D.
【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴. 【解答】解:A、不是轴对称图形,故本选项错误; B、不是轴对称图形,故本选项错误; C、不是轴对称图形,故本选项错误;
D、是轴对称图形,对称轴为两宽的中点的连线所在的直线,故本选项正确. 故选:D.
【点评】本题考查轴对称图形,注意掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.(2018·台湾·分)已知a=(
﹣
)﹣
,b=
﹣(
﹣
),c=
﹣
﹣
,
判断下列叙述何者正确?( )
A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c
【分析】根据有理数的减法的运算方法,判断出a、c,b、c的关系即可. 【解答】解:∵a=(c=
﹣
﹣
,
﹣
)﹣
=
﹣
﹣
,b=
﹣(
﹣
)=
﹣
+
,
∴a=c,b≠c. 故选:B.
【点评】此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:有理数减法法则:减去一个数,等于加上这个数的相反数.
3.(2018·台湾·分)已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a
为一数,求a的值为何?( ) A.﹣12 B.﹣4 C.4
D.12
【分析】利用待定系数法即可解决问题.
【解答】解:∵次函数y=3x+a的图形通过点(0,﹣4), ∴﹣4=0×3+a, ∴a=﹣4, 故选:B.
【点评】本题考查一次函数的应用、待定系数法等知识,熟练掌握待定系数法是解题的关键,属于中考基础题.
4.(2018·台湾·分)已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小绵购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?( ) A.16元 B.27元 C.30元 D.48元
【分析】直接利用小绵购买笔记本的花费为36元,得出笔记本的单价,进而得出小勤购买笔记本的花费.
【解答】解:∵某文具店贩售的笔记本每本售价均相等且超过10元,小绵购买笔记本的花费为36元,
∴笔记本的单价为:36÷3=12(元)或36÷2=18(元)或36元; 故小勤购买笔记本的花费为:12或18或36的倍数, 只有选项48符合题意. 故选:D.
【点评】此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.
5.(2018·台湾·分)若二元一次联立方程式( ) A.24
B.0
C.﹣4 D.﹣8
的解为x=a,y=b,则a+b之值为何?
【分析】利用加减法解二元一次方程组,求得a、b的值,再代入计算可得答案. 【解答】解:
,
①﹣②×3,得:﹣2x=﹣16, 解得:x=8,
将x=8代入②,得:24﹣y=8, 解得:y=16, 即a=8、b=16, 则a+b=24, 故选:A.
【点评】本题主要考查二元一次方程组的解,解题的关键是熟练掌握加减消元法解二元一次方程组的能力.
6.(2018·台湾·分)已知甲、乙两袋中各装有若干颗球,其种类与数量如表所示“今阿冯打算从甲袋中抽出一颗球,小潘打算从乙袋中抽出一颗球,若甲袋中每颗球被抽出的机会相等,且乙袋中每颗球被抽出的机会相等,则下列叙述何者正确?( )
红球 黄球 绿球 总计
甲袋 2颗 2颗 1颗 5颗
乙袋 4颗 2颗 4颗 10颗
A.阿冯抽出红球的机率比小潘抽出红球的机率大 B.阿冯抽出红球的机率比小潘抽出红球的机率小 C.阿冯抽出黄球的机率比小潘抽出黄球的机率大 D.阿冯抽出黄球的机率比小潘抽出黄球的机率小
【分析】根据概率公式分别计算出两人抽出红球、黄球的概率,比较大小即可得. 【解答】解:∵阿冯抽出红球的机率为、抽出黄球的机率为, 小潘抽出红球的机率为
=,小潘抽出黄球的机率为
=
,
∴阿冯抽出红球的机率与小潘抽出红球的机率相等, 阿冯抽出黄球的机率比小潘抽出黄球的机率大, 故选:C.
【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能
出现的结果数÷所有可能出现的结果数.
7.(2018·台湾·分)算式A.
B.
×(
﹣1)之值为何?( ) D.1
C.2
【分析】根据乘法分配律可以解答本题. 【解答】解:=
,
×(
﹣1)
故选:A.
【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.
8.(2018·台湾·分)若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?( ) A.﹣25 B.﹣19 C.5
D.17
【分析】先利用因式分解法解方程得到a=11,b=﹣3,然后计算代数式a﹣2b的值. 【解答】解:(x﹣11)(x+3)=0, x﹣11=0或x﹣3=0, 所以x1=11,x2=﹣3, 即a=11,b=﹣3,
所以a﹣2b=11﹣2×(﹣3)=11+6=17. 故选:D.
【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
9.(2018·台湾·分)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?( )
A.
B.
C.
D.
【分析】求出扇形的圆心角以及半径即可解决问题; 【解答】解:∵∠A=60°,∠B=100°, ∴∠C=180°﹣60°﹣100°=20°, ∵DE=DC, ∴∠C=∠DEC=20°, ∴∠BDE=∠C+∠DEC=40°, ∴S扇形DBE=故选:C.
【点评】本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说中考初中2018年台湾省中考数学试卷参考答案与试题解析在线全文阅读。
相关推荐: