【分析】(1)根据两人的方程思路,可得出:x表示甲队每天修路的长度;y表示甲队修路400米所需时间;
(2)根据题意,可找出:(冰冰)甲队修路400米所用时间=乙队修路600米所用时间;(庆庆)乙队每天修路的长度﹣甲队每天修路的长度=20米; (3)选择两个方程中的一个,解之即可得出结论. 【解答】解:(1)∵冰冰是根据时间相等列出的分式方程, ∴x表示甲队每天修路的长度;
∵庆庆是根据乙队每天比甲队多修20米列出的分式方程, ∴y表示甲队修路400米所需时间.
故答案为:甲队每天修路的长度;甲队修路400米所需时间.
(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;
第17页(共29页)
庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可).
(3)选冰冰的方程:
=
,
去分母,得:400x+8000=600x, 移项,x的系数化为1,得:x=40, 检验:当x=40时,x、x+20均不为零, ∴x=40.
答:甲队每天修路的长度为40米. 选庆庆的方程:
﹣
=20,
去分母,得:600﹣400=20y, 将y的系数化为1,得:y=10, 经验:当y=10时,分母y不为0, ∴y=10, ∴
=40.
答:甲队每天修路的长度为40米.
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
20.(7.00分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动: 第一步:点D绕点A顺时针旋转180°得到点D1; 第二步:点D1绕点B顺时针旋转90°得到点D2; 第三步:点D2绕点C顺时针旋转90°回到点D. (1)请用圆规画出点D→D1→D2→D经过的路径; (2)所画图形是 轴对称 对称图形; (3)求所画图形的周长(结果保留π).
第18页(共29页)
【分析】(1)利用旋转变换的性质画出图象即可; (2)根据轴对称图形的定义即可判断; (3)利用弧长公式计算即可;
【解答】解:(1)点D→D1→D2→D经过的路径如图所示:
(2)观察图象可知图象是轴对称图形, 故答案为轴对称.
(3)周长=4×=8π.
【点评】本题考查作图﹣旋转变换,弧长公式、轴对称图形等知识,解题的关键是理解题意,正确画出图形,属于中考常考题型.
21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度. 数学活动方案
活动时间:2018年4月2日 活动地点:学校操场 填表人:林平
课题 活动目的 测量学校旗杆的高度 运用所学数学知识及方法解决实际问题 第19页(共29页)
方案示意图 测量步骤 (1)用 测角仪 测得∠ADE=α; (2)用 皮尺 测得BC=a米,CD=b米. 计算过程 【分析】在Rt△ADE中,求出AE,再利用AB=AE+BE计算即可; 【解答】解:(1)用 测角仪测得∠ADE=α; (2)用 皮尺测得BC=a米,CD=b米. (3)计算过程:∵四边形BCDE是矩形, ∴DE=BC=a,BE=CD=b,
在Rt△ADE中,AE=ED?tanα=a?tanα, ∴AB=AE+EB=a?tanα+b.
【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题. 收集数据:
从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:
甲:400,400,408,406,410,409,400,393,394,395 乙:403,404,396,399,402,402,405,397,402,398 整理数据: 表一 质量(g) 频数 种类 甲
393≤x<396 396≤x<399 399≤x<402 402≤x<405 405≤x<408 408≤x<411 3 0 3 第20页(共29页)
0 1 3
y=(2﹣x+2tx×x=
x2+
x
③如图3中,当1<x<2时,重叠部分是四边形PNEQ.
y=(2﹣x+2)×[x﹣2(x﹣1)]=
x2﹣3
x+4;
综上所述,y=.
(3)①如图4中,当直线AM经过BC中点E时,满足条件.
第26页(共29页)
则有:tan∠EAB=tan∠QPB, ∴
=
,
解得x=.
②如图5中,当直线AM经过CD的中点E时,满足条件.
此时tan∠DEA=tan∠QPB, ∴
=
,
解得x=,
综上所述,当x=s或时,直线AM将矩形ABCD的面积分成1:3两部分. 【点评】本题考查四边形综合题、矩形的性质平行四边形的性质、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想解决问题,属于中考压轴题.
26.(10.00分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.
(1)当a=﹣1时,抛物线顶点D的坐标为 (﹣1,4) ,OE= 3 ; (2)OE的长是否与a值有关,说明你的理由; (3)设∠DEO=β,45°≤β≤60°,求a的取值范围;
(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.
第27页(共29页)
【分析】(1)求出直线CD的解析式即可解决问题;
(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断; (3)求出落在特殊情形下的a的值即可判断;
(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题;
【解答】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3, ∴顶点D(﹣1,4),C(0,3), ∴直线CD的解析式为y=﹣x+3, ∴E(3,0), ∴OE=3,
故答案为(﹣1,4),3.
(2)结论:OE的长与a值无关. 理由:∵y=ax2+2ax﹣3a,
∴C(0,﹣3a),D(﹣1,﹣4a), ∴直线CD的解析式为y=ax﹣3a, 当y=0时,x=3, ∴E(3,0), ∴OE=3,
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说中考初中2018年吉林省中考数学试题及解析(4)在线全文阅读。
相关推荐: