2.2.2 抑制凋亡:Martin Friedlander及其研究组报道HSCs对外核层产生的保护作用可能与凋亡抑制相关[15],将玻璃体腔植入HSCs的rd1Prd1小鼠视网膜做基因序列分析,发现多数增量调节的基因编码的蛋白具有抑制细胞凋亡的作用,如Tgtp 、H?2K2、MAD、Cxadr 、YY?1 等,它们可能在延长感光细胞寿命上起重要的治疗作用[15]。c?myc是参与细胞凋亡的转录因子,它可以增量调节下游区的凋亡诱导因子。研究发现c?myc在rd小鼠的表达是野生型的4~5倍。Mad1和YY?1具有抑制c?myc的活性,阻止c?myc诱导的凋亡的作用。Martin Friedlander 的实验中Mad1和YY?1在Lin?HSCs植入的视网膜有显著高表达。Mad1的高表达还可能通过抑制凋亡途径中的另一重要成分,即抑制Fas诱导的半胱天冬酶的激活来达到抑制凋亡的目的[15]。
3 视网膜干细胞移植
眼组织通过中央神经系统的祖细胞、前体细胞、视网膜干细胞途径,达到视细胞的再生。哺乳类动物视网膜干细胞在成年后很少具有活性,如何在体外培养视网膜干细胞,控制其增殖和分化,并且利用组织工程的方法体外构建视网膜,移植治疗相关视网膜疾病,是对视网膜干细胞研究的最终目的。但是从目前来看,如何大量扩增视网膜干细胞细胞,还是研究中瓶颈之一。
3.1 视网膜干细胞增殖分化培养的突破 最近Kumar[16]将干细胞生物反应器引入了视网膜细胞的培养中,生物反应器模拟了干细胞在动物体中所处的环境条件,让细胞处在一种富含蛋白质的液体里,模拟体内循环系统的流动,大大提高了干细胞培养的增殖率,并且研究人员还可以通过改变生物反应器中的细胞营养,控制干细胞的分化。实验发现生物反应器促进了细胞与细胞之间的相互作用,在各种有丝分裂原的作用下,可以构建出三维结构的视网膜组织,并且出现一定程度的细胞分化,可见这种新技术为视网膜干细胞培养研究带来了新的突破。
3.2 视网膜干细胞增殖和定向分化的机制研究
3.2.1 细胞内部的调节因子:干细胞处于分裂M期后,如果不再进入新的细胞增殖循环,就将进入分化过程。Zhang[ 17]通过多种基因研究的方法在新生小鼠视网膜中发现了增殖中的视网膜干细胞和分化而来的视杆细胞,都有Rb蛋白的表达,然而在Rb基因缺失的动物中,只有视网膜干细胞,而没有成熟分化的视杆细胞,说明Rb蛋白对视杆细胞增殖和分化有着很重要的作用。Rb蛋白通过与细胞周期蛋白激酶复合物(CDKs)的作用来改变磷酸化状态。当Rb蛋白的磷酸化被阻滞时,细胞退出细胞周期,发生增殖抑制,分化促进。而阻滞磷酸化进行的主要因子是细胞周期蛋白激酶抑制因子(CDKIs)。其中p27(Kip1)和p57(Kip2)均属于CDKIs中的一种,也是目前为止发现与视网膜发育关系最密切的两个因子。有文献报道[18]在细胞周期的G2晚期/G1早期, p27(Kip1)上调,视网膜发育中的细胞周期蛋白D1 (cyclinD1)出现下调。在p27(Kip1)或p57(Kip2)基因缺失的小鼠中,视网膜干细胞会出现不断分裂增殖直至大部分凋亡,却没有成熟分化的视网膜细胞出现。
3.2.2 细胞信号传递系统的作用:在调节干细胞向预定细胞分化的研究过程中,有两个细胞外控制信号, 即转化生长因子(TGFβ)家族和Wnt家族,它们都有可能参与了视网膜干细胞的增殖和分化过程。Anchan[19]提出TGFβ是视网膜干细胞在体外生长的有丝分裂原的观点。Wnt是一类分泌型糖蛋白,它的膜受体Frizzled是细胞膜上的一种具有7次跨膜结构的卷曲蛋白,它们共同组成Wnt/Frizzled信号通路。该信号通路激活以后可以阻断β2连锁蛋白(β catenin)的降解,引起β catenin在细胞质中的积累进入细胞核,再与T细胞因子相互作用,调节靶基因(如cyclin D1)的表达,从而达到调节细胞增殖分化的目的[20]。Kubo[21]在动物实验中发现,睫状体区(CMZ)是整个视网膜中Wnt2b(Wnt13)表达最高的区域,与之相应的Wnt蛋白受体Frizzled4和Frizzled5也有表达, Wnt信号通路的下游转录因子LEF1也呈现高表达。当阻断此信号通路时, CMZ中的干细胞分化成为了神经元和神经胶质细胞。体外实验结果与动物实验结果一致。并由此得出了Wnt家族分子参与视网膜干细胞增殖分化的结论。Das和Inoue[22,23]同样通过实验得出了Wnt信号通路与CMZ中视网膜干细胞的增殖分化有关的结论。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说医药类干细胞移植治疗视网膜色素变性研究进展(2)在线全文阅读。