22.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若
=3,求
的值.
(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是 ,CG和EH的数量关系是 ,(2)类比延伸
如图2,在原题的条件下,若出解答过程. (3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若(a>0,b>0),则
第11页(共84页)
的值是 .
=m(m>0),则的值是 (用含有m的代数式表示),试写
=a,=b,
的值是 (用含a、b的代数式表示).
23.在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE. 特殊发现:
如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明). 问题探究:
把图1中的△AEF绕着点A顺时针旋转.
(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记
=k,当k为何值时,△CPE总是等边三角形?(请直接写出k的值,不必说明理由)
24.如图,四边形ABCD和四边形DEFG都是正方形,连接BF、CE,点H、M分别为BF、CE中点
(1)如图(1)当正方形DEFG的边DE、DG分别在正方形ABCD的DA、DC边上,猜想MH、CE关系,并加以证明;
(2)将正方形DEFG旋转至如图(2)所示的位置,其它条件不变,结论是否发生变化?请证明你的结论.
第12页(共84页)
25.已知如图1,Rt△ABC和Rt△ADE的直角边AC和AE重叠在一起,AD=AE,∠B=30°,∠DAE=∠ACB=90°.
(1)如图1,填空:∠BAD= ;
= ;
(2)如图2,将△ADE绕点A顺时针旋转,使AE到AB边上,∠ACH=∠BCH,连接BH,求∠CBH的度数;
(3)如图3,点P是BE上一点,过A、E两点分别作AN⊥PC、EM⊥PC,垂足分别为N、M,若EM=2,AN=5,求△AND的面积.
26.在△ABC中,AB=AC,CD⊥AB交AB于点D,将三角板MNP按图甲的位置摆放,使三角板的一条直角边MP与AC边在一条直线上,当另一条直角边MN恰好经过点B时,易证:BM=CD.
(1)当三角板沿AC方向平移到图乙的位置(一条直角边MP仍与AC边在同一直线上,另一条直角边MN交BC边于点E,过点E作EF⊥AB于点F)时,请你猜想线段EF、EM、CD之间的数量关系,并证明你的猜想;
(2)当三角板沿AC方向继续平移到图丙所示的位置(线段NM的延长线与BC的延长线交于点E)时,线段EF、EM、CD之间的又有怎样的数量关系?请写出你的猜想,不需证明.
第13页(共84页)
27.已知△ABC是等腰三角形,AB=AC,D为边BC上任意一点,DE⊥AB于E,DF⊥AC于F,且E,F分别在边AB,AC上.
(1)如图a,当△ABC是等边三角形时,证明:AE+AF=BC.
(2)如图b,若△ABC中,∠BAC=120°,探究线段AE,AF,AB之间的数量关系,并对你的猜想加以证明.
(3)如图c,若△ABC中,AB=10,BC=16,EF=6,利用你对(1),(2)两题的解题思路计算出线段CD(BD>CD)的长.
28.如图,△ABC中,∠B=90°,点M在AB上,AM=BC,作正方形CMDE,连接AD. (1)求证:△AMD≌△BCM.
(2)点N在BC上,CN=BM,连接AN交CM于点P,试求∠CPN的大小. (3)在(2)的条件下,已知正方形CMDE的边长为3,AP=2PN,求AB的长.
第14页(共84页)
29.如图,正方形ABCD,DE与HG相交于点O. (1)如图(1),当∠GOD=90°,①求证:DE=GH; ②求证:GD+EH≥(2)如图(2),当∠GOD=45°,边长AB=4,HG=2,求DE的长.
DE;
30.P是边长为4的正方形ABCD的边BC上任意一点,过B点作BG⊥AP于G,过C点作CE⊥AP于E,连BE.
(1)如图1,若P是BC的中点,求CE的长;
(2)如图2,当P在BC边上运动时(不与B、C重合),求
的值.
第15页(共84页)
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2016年01月01日几何综合1(3)在线全文阅读。
相关推荐: