77范文网 - 专业文章范例文档资料分享平台

2013圆经典中考试题(含解析)(7)

来源:网络收集 时间:2019-01-26 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

∴PA是⊙O的切线. (2)在Rt△OAP中,∵∠P=30°, ∴PO=2OA=OD+PD, 又∵OA=OD, ∴PD=OA, ∵, ∴. ∴⊙O的直径为. 点评: 本题考查了切线的判定及圆周角定理,解答本题的关键是掌握切线的判定定理、圆周角定理及含30°直角三角形的性质. 21.(2013?绵阳)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.

(1)判断CD与⊙O的位置关系,并证明你的结论; (2)若E是

的中点,⊙O的半径为1,求图中阴影部分的面积.

考点: 切线的判定;扇形面积的计算. 专题: 计算题. 分析: (1)CD与圆O相切,理由为:由AC为角平分线得到一对角相等,再由OA=OC,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OC与AD平行,根据AD垂直于CD,得到OC垂直于CD,即可得证; (2)根据E为弧AC的中点,得到弧AE=弧EC,利用等弧对等弦得到AE=EC,可得出弓形AE与弓形EC面积相等,阴影部分面积拼接为直角三角形DEC的面积,求出即可. 解答: 解:(1)CD与圆O相切.理由如下: ∵AC为∠DAB的平分线, ∴∠DAC=∠BAC, ∵OA=OC, ∴∠OAC=∠OCA, ∴∠DAC=∠OCA, ∴OC∥AD, 31

∵AD⊥CD, ∴OC⊥CD, 则CD与圆O相切; (2)连接EB,由AB为直径,得到∠AEB=90°, ∴EB∥CD,F为EB的中点, ∴OF为△ABE的中位线, ∴OF=AE=,即CF=DE=, 在Rt△OBF中,根据勾股定理得:EF=FB=DC=则S阴影=S△DEC=××=. , 点评: 此题考查了切线的判定,以及平行线的判定与性质,熟练掌握切线的判定方法是解本题的关键. 22.(2013?天津)已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.

(Ⅰ)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (Ⅱ)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.

考点: 切线的性质;圆周角定理;直线与圆的位置关系. 分析: (Ⅰ)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°; (Ⅱ)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案. 解答: 解:(Ⅰ)如图①,连接OC, ∵直线l与⊙O相切于点C, ∴OC⊥l, ∵AD⊥l, ∴OC∥AD, 32

∴∠OCA=∠DAC, ∵OA=OC, ∴∠BAC=∠OCA, ∴∠BAC=∠DAC=30°; (Ⅱ)如图②,连接BF, ∵AB是⊙O的直径, ∴∠AFB=90°, ∴∠BAF=90°﹣∠B, ∴∠AEF=∠ADE+∠DAE=90°+18°=108°, 在⊙O中,四边形ABFE是圆的内接四边形, ∴∠AEF+∠B=180°, ∴∠B=180°﹣108°=72°, ∴∠BAF=90°﹣∠B=90°﹣72°=18°. 点评: 此题考查了切线的性质、圆周角定理以及圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用. 23.(2013?宜宾)如图,AB是⊙O的直径,∠B=∠CAD. (1)求证:AC是⊙O的切线; (2)若点E是

的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.

考点: 切线的判定;相似三角形的判定与性质. 专题: 压轴题. 分析: (1)证明△ADC∽△BAC,可得∠BAC=∠ADC=90°,继而可判断AC是⊙O的切线. (2)根据(1)所得△ADC∽△BAC,可得出CA的长度,继而判断∠CFA=∠CAF,利用等腰三角形的性质得出AF的长度,继而得出DF的长,在Rt△AFD中利用勾股定理可得出AF的长. 解答: 解:(1)∵AB是⊙O的直径, ∴∠ADB=∠ADC=90°, ∵∠B=∠CAD,∠C=∠C, 33

∴△ADC∽△BAC, ∴∠BAC=∠ADC=90°, ∴BA⊥AC, ∴AC是⊙O的切线. (2)∵△ADC∽△BAC(已证), ∴=,即AC=BC×CD=36, 2解得:AC=6, 在Rt△ACD中,AD==2, ∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD, ∴CA=CF=6, ∴DF=CA﹣CD=2, 在Rt△AFD中,AF==2. 点评: 本题考查了切线的判定、相似三角形的判定与性质,解答本题的关键是熟练掌握切线的判定定理、相似三角形的性质,勾股定理的表达式. 24.(2013?玉溪)如图,AB是⊙O的直径,弦CD交AB于点E,OF⊥AC于点F, (1)请探索OF和BC的关系并说明理由;

(2)若∠D=30°,BC=1时,求圆中阴影部分的面积.(结果保留π)

考点: 垂径定理;三角形中位线定理;圆周角定理;扇形面积的计算. 分析: (1)先根据垂径定理得出AF=CF,再根据AO=BO得出OF是△ABC的中位线,由三角形的中位线定理即可得出结论; (2)连接OC,由(1)知OF=,再根据直角三角形的性质得出AB及AC的长,根据扇形的面积公式求出扇形AOC的度数,根据S阴影=S扇形AOC﹣S△AOC即可得出结论. 解答: 解:(1)OF∥BC,OF=BC. 理由:由垂径定理得AF=CF. ∵AO=BO, ∴OF是△ABC的中位线. ∴OF∥BC,OF=BC.

34

(2)连接OC.由(1)知OF=. ∵AB是⊙O的直径, ∴∠ACB=90°. ∵∠D=30°, ∴∠A=30°. ∴AB=2BC=2. ∴AC=. ∴S△AOC=×AC×OF=. ∵∠AOC=120°,OA=1, ∴S扇形AOC==. ﹣. ∴S阴影=S扇形AOC﹣S△AOC= 点评: 本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键. 25.(2013?永州)如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为(1)求证:AB=BC;

(2)求证:四边形BOCD是菱形.

的中点.

考点: 切线的性质;菱形的判定. 专题: 证明题. 分析: (1)由AB是⊙O的切线,∠A=30°,易求得∠OC的度数,继而可得∠B=∠OCB=30°,又由等角对等边,证得AB=BC; (2)首先连接OD,易证得△BOD与△COD是等边三角形,可得OB=BD=OC=CD,即可证得四边形BOCD是菱形. 解答: 证明:(1)∵AB是⊙O的切线, ∴OB⊥AB, 35

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2013圆经典中考试题(含解析)(7)在线全文阅读。

2013圆经典中考试题(含解析)(7).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/446538.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: