苏州大学本科生毕业设计(论文)
第3章 两种波浪理论波解
3.1 确定性Airy线性波解
先对流体做出以下几点假设:(1)流体是无粘行不可压缩的均匀流体。(2)流体做有势的运动。(3)重力是唯一的外力。(4)流体自由表面的上的压强等于大气压强。(5)海底为水平的固体边界。(6)振幅或波高想对于波长是无限小,流体质点的运动速度是缓慢的。
λ=1/kηA=H/2dxy
图3-1波浪示意图
如图3-1所示,x方向为垂直方向,y方向为水平方向,d为水深,?为波长, A为参数,H为波高,k为波数,?为波面高程。基于以上假设可以得到二维小振幅波的一些基本方程。波面高程和速度势为[6]
??1(y,t)?Acos?? ?A?chkx?1(x,y,t)?sin??kshkd? (3.1)
其中,?为波浪圆频率,??ky??t??,?为初相位。波高H=2A,波数和圆频率满足色散关系
相应波速表示为
chkx?u(x,y,t)?A?cos???y1shkd ?shkx?u(x,y,t)?A?sin?x1?shkd?- 10 - 10
?2?gk th kd (3.2)
(3.3)
苏州大学本科生毕业设计(论文)
其中,uy1和ux1分别为波在x方向和y方向的速度。
3.2 确定性二阶Stokes波解
对于二阶Stokes波理论,其解由一阶渐进解(即Airy线性波解)和二阶非线性修正项所确定。它的波面高程?和速度势?可表示为
????y,t???1?y,t???2?y,t?, ?????x,y,t???1?x,y,t???2?x,y,t?, (3.4)
其中,?1, ?2分别为一阶项和二阶项波面高程,?1, ?2分别为一阶项和二阶项速度势。一阶项由(3.1)
??1(y,t)?Acos?? ?A?chkx?1(x,y,t)?sin??kshkd?给出,二阶项为[7]
?kA2chkd??y,t???ch2kd?2?cos2?,??24sh3kd ?????x,y,t??3?A2ch2kxsin2?,2?8sh4kd? (3.5)
波高H仍为2A,波数和圆频率仍满足色散关系(3.2)。 相应波速也由一阶项和二阶项表示
??uy?x,y,t??uy1?x,y,t??uy2?x,y,t?, ???ux?x,y,t??ux1?x,y,t??ux2?x,y,t?, (3.6)
其中,ux和uy分别为波在x方向和y方向的速度,ux1 、uy1和ux2、uy2分别为一阶项和二阶项的波速。即[7]
chkx3?2ch2kxu?A?cos?,???u?k?Acos2?y1y24??shkd4shkd ??u?A?shkxsin?,???u?3k?A2sh2kxsin2?xx2?shkd4sh4kd?1 (3.7)
3.3随机Airy线性波解
Pierson-Moskowitz谱是标准海浪谱, 它依赖于物理参量风速Uw,由(2.5)可以得到有义波高Hs与风速Uw的关系
- 11 - 11
苏州大学本科生毕业设计(论文)
20.20924Uw Hs?gPierson-Moskowitz谱用有义波高Hs表示即为
(S?)?0.78?3.11?exp?-42? 5???Hs?时域中的波面高程可用Pierson-Moskowitz谱表示为
?1?y,t???cos?2S(?)d? 0? (3.8)
使用Borgman方法[8]对上式积分,则有
?Hs2Pcos?p,??1??4Pp?1??Hs2P?pchkpx?sin?p, (3.9) ??1??4Pkshkdp?1pp???2?gkthkd,????p?1,2,,P,pp?p???p??p?1式中,?p?kpy??pt??p,?p?,?p表示随机初相位,?p表示第p个圆频率。
2假设?p是相互独立的随机变量,且服从?0,2??上的均匀分布。第零个频率?0为零,最后
一个频率?P的选取原则:使得在区域?0和?P之间包含Pierson-Moskowitz谱下方的大部分面积。而频率?1到?P?1的选取使得每个谱曲线段下的面积相等[9]。因此,?P由下式给出
??3.12Hs2?,??????p?1,?p???4??ln?Pp???3.12Hs2??P??14,P. (3.10)
此时,波速可表示为
?Hs?uy1?x,y,t??4??Hs?ux,y,t????x14?chkpx2Pcos?p,??pPp?1shkpdshkpx2sin?p.??pPp?1shkpdP (3.11)
3.4随机二阶Stokes波解
二阶Stokes波解由两部分组成,一部分为一阶随机波解,即为随机Airy线性波解(3.9)
- 12 - 12
苏州大学本科生毕业设计(论文)
?Hs2Pcos?p,??1??4Pp?1??Hs2P?pchkpx?sin?p, ??1??4Pkshkdp?1pp???2?gkthkd,????p?1,2,,P,pp?p??
另一部分为二阶项的随机波解,设为[10]
??????2????d?pqcos??p??q??d?pqcos??p??q??
?p?1q?1??????? ??A?????2??pqch?kpqx?sin??p??q??Apqch?kpqx?sin??p??q??p?1q?1??其中,
k??pq?kp?kq,k?kp?kq,SHs2pqp?kpthkpd,b=4P ?A???1gD?pq,???p?qpq??4bpbqS?pSq?Sp?Sq?ch?kpqd ????0,????????????????????????????????????????????????????????????p?qA??1bgD?pq4pbqSpSq?pqSp?Sq?ch?k?d? pq??d?pq???1?4bpb??Dpq??kpkq?SpSq?q???Sp?S??q??,???p?q???SpSq?? ??0,???????????????????????????????????????????????????????????????p?qd??14b??D?pq??kpkq?SpSq???pqpbq????Sp?Sq?? ?SpSq????Sp?Sq??S22??q?k2p?S2p??Sp?kq?Sq??????2?S??p?Sq?kpqthkpqd?D???2?S?S?2pq?kpkq?SpSq?pq?????????????????????????????????S?2,????p?q ?k??p?Sqpqthkpqd??0,????????????????????????????????????????????????????????????????????????????????p?q???- 13 - 13
(3.12)
苏州大学本科生毕业设计(论文)
SS??2222D???p?q?Sq?kp?Sp??Sp?kq?Sq???pq?Sp?Sq?2?k??pqthkpqd???????????????????????????????????????2?Sp?Sq?2?
kpkq?SpSq??Sp?S2??q??kpqthkpqd据(3.8)和(3.12),二阶随机波解最终可表为
???PP2????d?pqcos??p??q??d?pqcos??p??q?? ??p?1q?1?????PP?2????A??k?pqx?sin??p??q??A?pqch?k?pqchpqx?sin??p??q??p?1q?1??此时,
k?k?pq?p?kq,kpq?kp?kq ?1gD?2?pqA?????4bS??,???p?qpqpSqSp?Sqch?k ?pqd???0,????????????????????????????????????????????????????????????p?qA?1gD?pqpq?4b2SpSq?Sp?Sq?ch?k? pqd?????12??D?pq??kpkq?SpSq??4b???SS??d?p?q??,???p?qpq ???SpSq????0,???????????????????????????????????????????????????????????????p?q??14b?D?d2??pq??kpkq?SpSq????S??pqp?Sq??S? pSq?????Sp?Sq???Sq?k2p?S2p??Sp?k2q?S2q??????2???Sp?Sq?kpqthkpqd?D????2?S2p?Sq??kpkq?SpSq?pq?????????????????????????????,????p?q?2 ????Sp?Sq??kpqthkpqd??0,????????????????????????????????????????????????????????????????????????????????p?q???- 14 - 14
(3.13)
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库基于不同波浪理论下水波的时域分析(3)在线全文阅读。
相关推荐: