91、相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)
4
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93、判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS) 94、判定定理 3 三边对应成比例,两三角形相似(SSS)
95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理 2 相似三角形周长的比等于相似比 98、性质定理 3 相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合 103、圆的外部可以看作是圆心的距离大于半径的点的集合 104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理 不在同一直线上的三点确定一个圆。
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111、推论 1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112、推论 2 圆的两条平行弦所夹的弧相等 113、圆是以圆心为对称中心的中心对称图形
114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
5
117、推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论 2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 119、推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121、①直线 L 和⊙O 相交 ②直线 L 和⊙O 相切 ③直线 L 和⊙O 相离
d=r d﹥r
d﹤r
122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123、切线的性质定理 圆的切线垂直于经过切点的半径 124、推论 1 经过圆心且垂直于切线的直线必经过切点 125、推论 2 经过切点且垂直于切线的直线必经过圆心
126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条 线段长的比例中项
133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上 135、①两圆外离
④两圆内切
d﹥R+r
②两圆外切
d=R+r③两圆相交
d﹤R-r(R﹥r)
R-r﹤d﹤R+r(R﹥r)
d=R-r(R﹥r) ⑤两圆内含
136、定理 相交两圆的连心线垂直平分两圆的公共弦 137、定理 把圆分成 n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正 n 边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形 138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139、正 n 边形的每个内角都等于(n-2)×180°/n
140、定理 正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形 141、正 n 边形的面积 Sn=pnrn/2
p 表示正 n 边形的周长
6
142、正三角形面积√3a/4 a 表示边长
143、如果在一个顶点周围有 k 个正 n 边形的角,由于这些角的和应为 360°,因此 k× (n-2)180°/n=360°化为(n-2)(k-2)=4 144、弧长计算公式:L=n 兀 R/180
145、扇形面积公式:S 扇形=n 兀 R^2/360=LR/2 146、内公切线长= d-(R-r)
外公切线长= d-(R+r)
二、基本知识
2.1 数与代数
2.1.1 数与式
2.1.1.1 有理数
有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示 0(原点),选取某一长度作为单位长度, 规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一 个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧, 并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于 0, 负数小于 0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝 对值是他的本身、负数的绝对值是他的相反数、0 的绝对值是 0。两个负数比较大小, 绝对值大的反而小。 有理数的运算:
加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为 0; 绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一 个数与 0 相加不变。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说中考初中中考初中数学知识点总结11页(2)在线全文阅读。
相关推荐: