经济性问题:
矿物储量问题解决了,那么经济性也就不是什么问题了。因为工业化生产有这个需求,就有必要建立大规模的常年生产的模式。这样,点燃一次千吨级聚变,当然也就不会是要用爆炸一颗军用炸弹那么大的代价了。这并不难以理解,炸弹是军用装备,国家为了有足够的国家安全保障能力,必须建立一定规模的生产工厂,养一大批科学家和专业工人,但战争又不是天天打,实际上人类只打了两发核炸弹,所以,大代价建立的工业系统只能是以最小的生产能力开工甚至于停工养线,炸弹的生产成本自然就只可能是很高很高的了。这也从一个侧面解释了现代工业强国为什么总是要在这个世界上发动一场又一场的战争,今天那样的战争商业活动的成份更多了一些。这里谈的是能源燃料成本问题,超大规模工业化生产的产品成本,自然会向原材料资源成本接近。资料显示,同比能量的聚变成本只是裂变能量成本的1/20。由于只有波动能一种能量有可能传出容器,在各种转化手段作用之下,总体上不会有太多的外传波动能比率,因此,锅炉的热升温效率应该是很高的(也许大于98%),发电效率与裂变电站在一个水平上。
再说一说工程建设成本问题。工程投入以目前裂变核电站的投入水平看:五十至一百亿人民币/一百万千瓦(5-10元/瓦),我设想的这一系统在十分宽松的情况下可安排五百套一百万千瓦机组(目前全国总装机容量)满负荷工作,锅炉体建设总投入2000亿至5000亿元人民币左右应是可以完成和可以想象的,具体多少机组才会与裂变电站单价持平,要在实际的设计中进行计算,我们叫这个装机数量为经济“临界规模”。这也只不过是三峡工程的投入水平,没三峡那么大的移民和环境问题,据说三峡工程资金的最大头就是移民资金。国际热核项目的‘托卡马克’试验仅仅是一个原理验证试验就计划投入100亿欧元、三十年时间,而我们的方案就是一个完整的几乎是以目前全国一半装机容量为起点的大工程,随后还可以成倍扩充。如此规模的发电机组投入,其单机投入成本相应也会要低很多,总体大约会在1-3元/瓦以内的水平上。这样整个能量系统的发电装机要在30-70套1000MW机组水平才能与裂变电站的单位成本持平。装机越多单位成本越低,也可以考虑开发更大的机组(比如一千万千瓦,前提是有需求和技术基础)。我国如果想达到美国的人均装机容量水平恐怕只有这个方案比较可能实现了!如果是我自己来看这个问题,我甚至认为这是我国在人均装机容量上接近美国的唯一方案,无论是在技术还是在工业规模上都是如此。总装机容量可是要达到美国的五倍!如果把那时无论如何也达不到的美国石油人均水平折算为电能还要大一些。工程地域面积不大而且集中,全系统占地面积不过三五十平方公里;工程地质条件选择最优地区;主体为揭开式开挖工程。这些都有利于控制工程成本。地面除必要的发配电建筑外,可搞人工生态林,建立永久环保‘无人区’。
以我国的版图看,第一个这种系统建立在华中地区比较有利,这样就根本解决了最发达地区——华中、华东、华南和华北地区的电力布局问题,也为西部地区的发展提供了决定性的能源支撑,只有东北电网不在其理想辐射半径之内。
从全球能量供应布局来看,二十个电厂就足够满足未来几百年的能源需求水平——欧亚大陆十座,印度次大陆两座,北美两座,非洲两座,南美两座。岛屿国家没有使用这个系统的空间,大不了放一组海底电览过去。
这个系统是不是太大了?我以为不!上世纪五十年代在考察三峡工程时,对它的发电量也有过太大的顾虑,它比当时全国用电量还要大好几倍!今天三峡工程完成了,除三峡以外国家在电力系统上还有上百倍的发展,电力供应仍是一个问题。想要达到美国的人均装机容量水平(姑且认定这就是现代化的标准),如果还是走扩大煤电的老路,我国就必须要达到每年100亿吨级的烧煤水平,平均下来就是一天烧二三千万吨的煤,太可怕了!资源储备无法容忍,环境无法承受,我们也死不起那么多的矿工!烧油更是不靠谱;裂变核电站杯水车薪,也维持不了几十年;水利发电也有个极限;太阳能、风能、潮汐能因能量密度太小,集能设备单位投入过大,还受地域、季节、时间限制,这些不可能根本解决如此巨大的能源缺口。谁叫我国的人口那么多呢?据说十六亿是我国人口的上极限拐点。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说理学类燧人计划——关于可控制核聚变(9)在线全文阅读。
相关推荐: