77范文网 - 专业文章范例文档资料分享平台

小升初奥数模拟训练题(18套带答案)(3)

来源:网络收集 时间:2019-04-23 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

13. 车库里有8间车房,顺序编号为1,2,3,4,5,6,7,8.这车房里所停的8辆汽车的车号恰好依次是8个三位连续整数.已知每辆车的车号都能被自己的车房号整除,求车号尾数是3的汽车车号.

14. 赵、钱、孙、李、周、吴、陈、王8位同学,参加一次数字竞赛,8个人的平均得分是64分.每人得分如下:

其中吴与孙两位同学的得分尚未填上,吴的得分最高,并且吴的得分是其他一位同学得分的2倍.问孙和吴各得多少分?

———————————————答 案——————————————————————

答 案:

1. 5000. 2. 3.

显然,这3个自然数分别为1,2,3. 3. 39.

由于正方体上相对两个面上写的数之和都等于9,所以每个正方体六个面上写的数之和等于3×9=27.两个正方体共十二个面上写的数之总和等于2×27=54.而五个看得见的面上的数之和是1+2+3+4+5=15.因此,看不见的七个面上所写数的和等于54-15=39.

4. 426.

各位数字之和为(2+4+6+8)×10+5×(1+2+…+9)+1=426. 5. 3.

设箱子中共有n顶帽子,则红帽子n-2顶,蓝帽子n-2顶,黄帽子n-2顶.依题意,有(n-2)+(n-2)+(n-2)=n,解得n=3.

6. 合数.

提示: 359999=360000-1=6002-1=(600+1)×(600-1)=601×599. 7. 360.

汽车开出30×4=120(千米)后,火车开始追,需120÷(3×30-30)=2(小时)才能追上,因此甲乙两地相距2×(3×30)×2=360(千米).

8. 2998.

设这连续的1999个自然数的中间数为a,则它们的和为1999a,故1999a为完全平方数,又1999为质数,令a=1999t2(t为自然数),则这1999个连续自然数中的最大数为a+999=1999t2+999,t=1时,最大数的值最小,为1999+999=2998.

9. 五(4).

11

根据“到建筑工地搬砖是到校办工厂劳动的人数的2倍” ,可得到这两个地方去的10个班的学生数之和应是3的倍数.11个班的学生总数是584人,而584除以3余2,因此留下来打扫卫生的这个班的学生人数应除以3余2,而各班人数中只有53除以3余2,故留下来打扫卫生的是五(4)班.

10. 11.

购物3次,必须备有3个5元,3个2元,3个1元.为了应付3次都是4元,至少还要2个硬币,例如2元和1元各一个,因此,总数11个是不能少的.准备5元3个,2元5个,1元3个,或者5元3个,2元4个,1元4个就能三次支付1元至9元任何钱数.

11. 设小明出发2分钟后到上课的时间为x分钟,依题意,得 50(x+2)=(50+10)(x-5),

解得x=40.因此,小明家到学校的路程为50×2+50×(40+2)=2200(米).

13. 1,2,3,4,5,6,7,8的最小公倍数是840,840加上1~8中的某个数后必能被这个数整除,所以8辆汽车的车号依次为841~848.故车号尾数是3的汽车车号是843.

14. 吴的得分最高,要多于90分,但他不能是赵、李、陈、王四人中任何一人得分的2倍.周的得分2倍是66分,也不能是吴的得分.

其余六人得分之和是74+48+90+33+60+78=383(分).因此,吴与孙的得分之和是64×8-383=129(分).如果吴是孙的得分2倍,129÷(2+1)=43,吴得86分未超过90,吴只能是钱的得分2倍,即96分,从而孙的得分为129-96=33(分).

小升初奥数模拟试题(七)

_____年级 _____班 姓名_____ 得分_____

一、填空题

1. 1~10000的自然数中,能被5或7整除的数共有_____个;不能被5也不能被7整除的数共有_____个.

2. 计算:

12

3. 要使6位数15□□□6能够被36整除而且所得的商最大,□□□内应填______.

4. 把200本书分给某班学生,已知其中总有人分到6本.那么,这个班最多有______人. 5.有一个数除以5余数是3,除以7余数是2,这个数除以35的余数是_____.

6. 桌上有一个固定圆盘与一个活动圆盘,这两个圆盘的半径相等.将活动圆盘绕着固定圆盘的边缘作无滑动的滚动(滚动时始终保持两盘边缘密切相接).当活动圆盘绕着固定圆盘转动一周后,活动圆盘本身旋转了______圈.

7. 甲、乙两包糖的重量比是4:1,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:8,那么两包糖重量的总和是_____克.

8. 设1,3,9,27,81,243是6个给定的数,从这6个数中每次或者取一个,或者取几个不同的数求和(每个数只能取一次),可以得到一个新数,这样共得到63个新数,如果把它们从小到大依次排列起来是1,3,4,9,10,12…,那么第60个数是_____.

9. 对120种食物是否含有维生素甲、乙、丙进行调查,结果是:含甲的62种,含乙的90种,含丙的68种;含甲、乙的48种,含甲、丙的36种,含乙、丙的50种;含甲、乙、丙的25种.问(1)仅含维生素甲的有____种;(2)不含甲、乙、丙三种维生素的有____种.

10. 已知一个三位数能被45整除,它的各位上的数字都不相同.这样的三位数有_______个.

二、解答题

11. 老师黑板上写了十三个自然数,让小明计算平均数(保留两位小数),小明计算出的答数是12.43.老师说最后一位数字错了,其它的数字都对.正确答案应该是什么?

12. 下面是两个五位数相乘的乘法算式.其中“从小爱数学”的每一个字代表一个数字.请你根据这个算式,确定出“从小爱数学”所表示的五位数.

从小爱数学 ×) 从小爱数学 □□□□□□ □□□□□□ □□□□□□

□□□□□□ □□□□□□从小爱数学

13. 下图是从一个立体图形的正上面与正侧面看到的图形,试回答下列问题:

(1)以每秒1毫升的速度,往容器内注水时,水面到离台面10 的地方为止,需要多少秒? (2)求这个立体图形的体积. (3)求这个立体图形的表面积.

14. 有一个K位数N,在它的两头各添上一个1以后就变成一个K

13

+2位的数M。若M是N的99倍,求当K最小时,N的值。

小升初奥数模拟试题(八)

_____年级 _____班 姓名_____ 得分_____

一、填空题

1. 计算:(2.5×4/5)÷(1/4×0.8)-0.75÷3/40=_____.

2. 将一个不能被3整除的自然数,拆分成若干个自然数的和.那么,在这若干个自然数中不能被3整除的数至少有_____个.

3. 甲、乙两辆汽车,甲在西地,乙在东地,同时向东开行.甲每小时行60千米,乙每小时行48千米,行了5小时后,甲在乙后面24千米处.那么东西两地相隔_____千米.

4. 将0,1,2,3,4,5,6,7,8,9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同.

□+□□=□□□ 则算式中的三位数最大是_____. 5. 将循环小数相乘,取近似值,要求保留一百位小数.那么,该近似值的最后一位小数是_____.

6. 一个两位数减去它的倒序数(如92的倒序数是29,30的倒序数是3),其差大于0且能被9整除.那么,这样的两位数共有_____个.

7. 用8个不同数字写成的8位数中,能被36整除的最大数是_____.

8. 甲有216个玻璃球,乙有54个同样的玻璃球.两人相互给球,8次后,甲有的个数是乙的8倍,平均每次甲要少给乙_____个球.

9. 在1,2两数之间,第一次写上3;第二次在1,3; 3,2之间分别写上4,5(如下图),每一次都在已写上的两个相邻数之间,写上这两个相邻数之和.这样的过程共重复了八次.那么,所有数之和是_____.

1……4……3……5……2

10. 直角三角形的两直角边的长都是整厘米数,面积为59.5平方厘米.每次取四个同样的三角形围成(不重叠,不剪裁)含有两个正方形图案的图形(如图),在围成的所有正方形图案中,最小的正方形的面积是_____平方厘米,最大的正方形的面积是_____平方厘米.

二、解答题

14

11. 甲每分钟走50米,乙每分钟走60米,丙每分钟走70米.甲、乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,求A、B两地的距离.

12. 如图所示,在正方形ABCD中,红色、绿色正方形的面积分别是27和12,且红、绿两个正方形有一个顶点重合.黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一个顶点位于绿色正方形两条对角线的交点.求黄色正方形的面积.

13. 是一个三位数,由a,b,c三个数码组成的另外五个三位数之和等于2743.求

三位数.

14. 某小学有六名乒乓球选手进行单打循环赛.比赛在三个台上同时进行,比赛时间是每星期六的下午,每人每周只能而且必须参加一场比赛,因而比赛需要进行五周.

已知在第一周的星期六C和E对垒;第二周B与D对垒;第三周A和C对垒;第四周D和E对垒.当然,在上述这些对垒的同时,另外还有两台比赛,但这两台比赛是谁和谁对垒,我们不清楚.

问:上面未提到过名字的F在第五周同谁进行了比赛?请说明理由.

———————————————答 案——————————————————————

答 案:

2. 1.

不能被3整除的数至少有1个,否则每个数都能被3整除,其和必为3的倍数,与已知产生矛盾.

3. 84.

行了5小时,追了5×(60-48)=60(千米),还相隔24千米,因此,原来两人相距60+24=84(千米),即两地相隔84千米.

4. 105.

15

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库小升初奥数模拟训练题(18套带答案)(3)在线全文阅读。

小升初奥数模拟训练题(18套带答案)(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/622381.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: