∴∠APS=∠APR-∠SPR=20°, ∵AB∥CD,
∴∠PSQ=∠APS=20°. 【考点】平行线的性质
【解析】【分析】根据平行线的性质得内错角∠FRG=∠APR=110°,再由垂直性质得∠SPR=90°,从而求得∠APS=20°;由平行线的性质得内错角∠PSQ=∠APS=20°.
21、( 5分 ) 把下列各数填在相应的括号内:
整数: 分数: 无理数: 实数:
【答案】解:整数: 分数: 无理数: 实数:
【考点】实数及其分类
第 16 页,共 21 页
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。
22、( 5分 ) 如图所示是小明自制对顶角的“小仪器”示意图:( 1 )将直角三角板ABC的AC边延长且使AC固定;
( 2 )另一个三角板CDE的直角顶点与前一个三角板直角顶点重合;
( 3 )延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?
【答案】解:∵∠PCD=90°-∠1,又∵∠1=30°,∴∠PCD=90°-30°=60°,而∠PCD=∠ACF,∴∠ACF=60°. 【考点】角的运算,对顶角、邻补角
【解析】【分析】根据题意画出图形,根据三角板各个角的度数和∠1的度数以及对顶角相等,求出∠ACF的度数.
23、( 5分 ) 把下列各数填在相应的括号内:
①整 数{ };
第 17 页,共 21 页
②正分数{ }; ③无理数{ }.
【答案】解:∵∴整数包括:|-2|,
, -3,0;
正分数:0., , 10%; ,1.1010010001
(每两个1之间依次多一个0)
无理数:2,
【考点】实数及其分类
【解析】【分析】根据实数的相关概念和分类进行判断即可得出答案。
24、( 5分 ) 把下列各数分别填入相应的集合里:-2.4,3,-
,
,
,0,
,-(-2.28),
3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1). 正有理数集合:( …); 整数集合:( …); 负分数集合:( …); 无理数集合:( …). 【答案】解:正有理数集合:(3,
, -(-2.28), 3.14 …);
第 18 页,共 21 页
整数集合:( 3,0,-∣-4∣ …); 负分数集合:( -2.4,- 无理数集合:(
,
, …);
, -2.1010010001…… …).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。逐一填写即可。
25、( 5分 ) 如图,已知DA⊥AB,DE平分∠ADC,CE平分 ∠BCD, ∠1+ ∠2=90°.求证:BC ⊥ AB.
【答案】证明:∵DE平分 ∠ADC,CE平分 ∠BCD, ∴∠1=∠ADE,∠2=∠BCE, ∵∠1+∠2=90°, 即∠ADE+∠BCE=90°,
∴∠DEC=180°-(∠1+∠2)=90°,
第 19 页,共 21 页
∴∠BEC+∠AED=90°, 又∵DA ⊥AB, ∴∠A=90°,
∴∠AED+∠ADE=90°, ∴∠BEC=∠ADE, ∵∠ADE+∠BCE=90°, ∴∠BEC+∠BCE=90°, ∴∠B=90°, 即BC⊥AB.
【考点】垂线,三角形内角和定理
【解析】【分析】根据角平分线性质得∠1=∠ADE,∠2=∠BCE,结合已知条件等量代换可得∠1+∠2=∠ADE+∠BCE=90°,根据三角形内角和定理和邻补角定义可得∠BEC=∠ADE,代入前面式子即可得∠BEC+∠BCE=90°,由三角形内角和定理得∠B=90°,即BC⊥AB.
26、( 5分 ) 如图, ∠ABE+ ∠DEB=180°, ∠1= ∠2.求证: ∠F= ∠G.
第 20 页,共 21 页
【答案】证明:∵∠ABE+ ∠DEB=180°, ∴AC∥DE, ∴∠CBO=∠DEO, 又∵∠1= ∠2, ∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°, 在△GEO中,∠GEO+∠GOE+∠G=180°, ∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
第 21 页,共 21 页
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库大朝乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷(4)在线全文阅读。
相关推荐: