(A)
?10dy?f(x,y)dx01 (B)?10dy?1x01y2f(x,y)dxf(x,y)dx
3x(C)?10dy?y02f(x,y)dx (D)?3x0dy?3.下列函数中, 是微分方程y???5y??6y?xe(A)y?(ax?b)e23x3x的特解形式(a、b为常数)
(B) y?x(ax?b)e (D) y?ae?(C)y?x(ax?b)e?3x
? 4.下列级数中,收敛的级数是
(A)
2?n?1212n?1 (B)
?z2?2n?1n?1n? (C)
?n?1(?3)2nn (D)
?n?1(?1)nn
5.设x?y?z?4z,则?xx?
xx?xz
(A) z (B) 2?z (C) z?2 (D) 得分
三、求解下列各题(每题7分,共21分)
z?ulnv,而u?2阅卷人 1. 设
?xy,v?3x?4y?z?z,,求?x?y
2. 判断级数
区域
?n?13nnn2的收敛性 3.计算
??eDx?y22dxdy,其中D为x?y?1所围
22四、计算下列各题(每题10分,共40分)
y??1xy?lnx1. 求微分方程
I?的通解.
,其中D是由直线y?x,x?1及x轴围成的平面区域.
2.计算二重积分
???x?y?dxdyD3.求函数f(x,y)?y?x?6x?12y?5的极值.
?32?4.求幂级数
n?1x2nnn?4的收敛域.
高等数学(下)模拟试卷一参考答案
一、填空题:(每空3分,共15分)
1、 {(x,y)|x?y?0,x?y?0} 2、4、2 5、y?C1e?C2ex?3x?yx?y 3、
22?40dx?1xxf(x,y)dy2
二、选择题:(每空3分,共15分) 1.C2.D3.C4A5.D 三、计算题(每题8分,共48分)
??1、解: A(1,2,3)????s1?{1,0,?1}??s2?{2,1,1} 2?
ij01k???n?s1?s2?12?1?i?3j?k1 6?
?平面方程为 x?3y?z?2?0 8?
2、解: 令u?xy?z?2v?xy 2?
2?z?u?z?v2????f1??y?f2??2xy ?x?u?x?v?x 6?
?z?z?u?z?v2?????f1??2xy?f2??x?y?u?y?v?y 8?
3、解:D:?0???2?20?r?2, 3?
3??xDdxdy???rDcos?drd??2?2?0cos?d??rdr0223?4? 8?
2x2??fx(x,y)?e(2x?2y?4y?1)?01?2x(,?1)f(x,y)?e(2y?2)?0?y4.解: ? 得驻点2 4?
A?fxx(x,y)?e(4x?4y?8y?4),2x2B?fxy(x,y)?e(4y?4),12122xC?fyy(x,y)?2e2x 6?
?A?2e?0,AC?B?4e?0222?极小值为
f(,?1)??e 8?
?P5.解:P?2xy?3sinx,曲线积分与路径无关 2? 积分路线选择:L1:
Q?x?e,有?yy?2x??Q?x,?
y?0,x从0??,L2:2yx??,y从0?2 4?
?L(2xy?3sinx)dx?(x?e)dy??L1Pdx?Qdy??2L2Pdx?Qdy2y2
2
y??1xy?e?P??P(x)dxx???03sinxdx?x?0(??e)dy?2??e?7 8?
1x,Q?e6.解:
?通解为
2?
11y?e??1x?dxP(x)dx?dxx?[?Q(x)e?dx?C]?ex[?eexdx?C] 4?
代入
yx?1[?e?xdx?C]?x1x[(x?1)e?C]y?1xx 6?
x?1,得C?1,?特解为
[(x?1)e?1] 8?
四、解答题
1、解:
????2xzdydz?yzdzdx?zdxdy?2???(2z?z?2z)dv????zdv?? 4?
?2?0???rcos?sin?drd?d??203 6?
?方法一: 原式=方法二: 原式=
?d??40cos?sin?d??2?rr2rdr?13?2 10?
2?2?0d??rdr?0n?11zdz?2??r(1?r)dr?0?2 10?
?2、解:(1)令
?un?(?1)n3n?1limun?1unn??n?13?lim?nn??3nn?1?13?1??n?1n3n?1收敛, 4?
??(?1)n?1n?1n3n?1绝对收敛。 6?
?n?s(x)?(2)令
?nxn?1x0?x?nxn?1?n?1n?1?xs1(x)?x1?x 2?
x1?x)??1(1?x) 5?
2?x0?s1(x)dx???n?1nxdx??xn?1n?s1(x)?(?s(x)?x(1?x)2x?(?1,1) 6?
高等数学(下)模拟试卷二参考答案
一、填空题:(每空3分,共15分)
1、 {(x,y)|y?4x,0?x?y?1} 2、edx?2edy 3、?0222221dy?eeyf(x,y)dx
14、12(55?1) 5、y?(C1?C2x)e
x二、选择题:(每空3分,共15分) 1. A 2.B3. B 4.D5. A 三、计算题(每题8分,共48分)
??1、解: A(0,2,4)????n1?{1,0,2}??n2?{0,1,?3} 2?
???ij01x?ks?n1?n2?102??2i?3j?k?3y?23?z?41x?y 6? 8?
?直线方程为?22、解: 令u?sinxcosy?zv?e 2?
?x??z?u?z?vx?y????f1??cosxcosy?f2??e?u?x?v?x 6?
?z?u?z?vx?y????f1??(?sinxsiny)?f2??e?y?u?y?v?y 8?
?D:0???0?r?143、解:, 3?
???z??arctanDyx?dxdy???r?drd???D40?d??rdr?01?264 8?
??fx(x,y)?2x?6?0??fy(x,y)?10y?10?0 得驻点(3,?1) 4? 4.解: ?A?fxx(x,y)?2,B?fxy(x,y)?0,2C?fyy(x,y)?10 6?
?A?2?0,xAC?B?20?0?极小值为f(3,?1)??8 8?
x5.解:P?esiny?2y,?PQ?ecosy?2,
?Q?x?ecosy,2?
x有?y?ecosy?2,OA:x 取A(2a,0),
y?0,x从0?2a 4?
?LPdx?Qdy?2?OAPdx?Qdy???(D?Q?x??P?y)dxdy???2dxdy??aD2 6?
?原式=?a-6.解:
P??1x?1?OAPdx?Qdy322=?a?0??a 8?
,Q?(x?1)2 2?
131?通解为
y?e??P(x)dx?P(x)dx?dx?dx[?Q(x)e?dx?C]?ex?1[?(x?1)2ex?1dx?C]1 4?
?(x?1)[?(x?1)2dx?C]?(x?1)[(x?1)2?C]3 8?
四、解答题
231、解:(1)令
?un?(?1)n?12sinn?3nlimun?1un2?limn??n?1sin?33n?1n??2sinn?n?23?14?
??2sinn?1n?3收敛,
?n???(?1)n?1n?12sinn?3绝对收敛 6?
ns(x)?(2)令
??n?1xnn? xn?1??xn?s?(x)?????nn?1???s(x)??n?1?11?x, 2?
?x0s?(x)dx?s(0)??ln(1?x) 4?
2、解:构造曲面
?1:z?1,上侧
??2xdydz?ydzdx?zdxdy???2xdydz?ydzdx?zdxdy??1 2?
????(2?1?1)dv?4???dv?4???2?0d??rdr?01dz?8?2r1?10(1?r)rdr?2?2
4? 6? 8? ?I?2????2xdydz?ydzdx?zdxdy? 10?
1?2????dxdy??Dxy 12?
高等数学(下)模拟试卷三参考答案
一.填空题:(每空3分,共15分)
?2??2?0,?0,??3?X?1且x?0?或?3? 1.;2.a;3. 2dx;4.0;5. ?二.选择题:(每空3分,共15分) 1.A;2.D;3.A;4.A;5.C.
1三.计算题:
1.
?lim?1?kx?x?01?kx?(?k)??1?kx?k4??e?k2?
22?2 2.
??limx?01cosxsintdtx1x322??lim?(?sincosx)(?sinx)3x4?1xx?0??2?2?
dydx?elnsin 3.
四.计算题:
y1?1?cos??2?1x?x?sinx1??1x2elnsincot1x
1?ey??y?xy??0;x?0,y?02?;2?dydxx?0?ye?xyx?0?013? 1.
?xarcsinx?;
1?x22.原式
3?x11?x22dx?xarcsinx??2??2d(1?x)22?
3?xarcsinx?1?x?c?2?
3 3. 原式
??0?0?(sinx)2cosxdx22???20(sinx)dsinx?3a2?(sinx)2dsinx3??451?
4.原式
?3ad(3a?x)?23a?x2223?22???3a?x???02??3a?3a?3a21?。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库高等数学下册复习题模拟试卷和答案(3)在线全文阅读。
相关推荐: