77范文网 - 专业文章范例文档资料分享平台

2017~2018学年度青岛版五年级数学上册第七单元折线统计图教学设(8)

来源:网络收集 时间:2018-12-17 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

数学与生活的联系,抽象的数学问题找到了具体的生活原型作为依托,学生对于排列的意义理解就更形象了。接着组织学生同桌通过摆摆学具进行合作探究,在学生合作探究前,提出了明确的要求。在合作探究中,保证了学生合作学习的时间,并深入小组中恰当地给予以指导,并拿出几个不同顺序的学生展示给大家。让学生在讨论交流的过程中,经历比较发现重复、或遗漏或无顺序排列,从而引出按一定的顺序排列较好。这样既激发了学生的学习兴趣,又使学生的思维过程逐步的“数学化”。

? 教学资料包

教学精彩片段

创设情境导入

师:同学们,六年级的同学在毕业时,好多同学为了跟同学留念,想和自己喜欢合影留念。

出示图画:你有什么发现?

师:在拍照时,小华和小冬不经意间按顺序不同的方法排成了一排,这种方法就是我们要学的新的数学知识——排列。(板书:排列)

这时又有一个同学跑了过来,如果她们三个想要排成一行合影留念,有几种排法呢? 设计意图:以“照相”这一情景学生感兴趣的素材导入新课,激发学生的学习兴趣,有利于充分地利用学生已有的生活经验,吸引学生主动参与的活动。

教学资源

有A、B、C、D、E、F、G七人排成一排。 (1)一共有多少种排法?

(2)若A必须排在最左边,有多少种排法? (3)若A、B必须排在两边有多少排法?

解答:(1)7×6×5×4×3×2×1=5040(种) (2)6×5×4×3×2×1=720(种) (3)2×5×4×3×2×1=240(种) 答:(1)一共有5040种排法。

(2)若A必须排在最左边,有720种排法。 (3)若A、B必须排在两边有240排法。

资料链接

加法原理和乘法原理

导言:

加法原理和乘法原理,是排列组合中的二个基本原理,在解决计数问题中经常运用。把握这两个原理,并能正确区分这两个原理,至关重要。

一、概念

(一)加法原理

如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。

例:从甲地到乙地,一天中火车有4班,汽车有2班,轮船有3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?

解析:把乘坐不同班次的车、船称为不同的走法。要完成从甲地到乙地这件事,可以乘火车,也可以乘汽车,还可以乘轮船,一天中,乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法。而乘坐火车、汽车、轮船中的任何一班次,都可以从甲地到乙地,符合加法原理。所以从甲地到乙地的总的走法=乘火车的4种走法+乘汽车的2种走法+乘轮船的3种走法=9种不同的走法。

(二)乘法原理

如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。

例:用1、2、3、4这四个数字可以组成多少个不同的三位数?

解析:要完成组成一个三位数这件事,要分三个步骤做,首先选百位上的数,再选十位上的数,最后选个位上的数。

选百位上的数这一步骤中,可选1、2、3、4任何一个,共4种方法

选十位上的数这一步骤中,可选除百位上已选好那个数字之外的三个数字,共3种方法

选个位上的数这一步骤中,可选除百、十位上已选好的两个数字之外的另两个数字,共2种方法

单独挑上面的任何一步中的任何一种方法,都不能组成一个三位数,符合乘法原理 所以,可以组成:4×3×2=24(个)不同的三位数 二、加法原理和乘法原理的区别

什么时候使用加法原理,什么时候使用乘法原理,最关键是要把握住加法原理与乘法原理的区别。从上面两个例子我们容易发现,加法原理与乘法原理最大的区别就是:如果完成一件事有几类方法,不论哪一类方法,都能完成这件事时,运用加法原理,简称为“分类-----加法”;如果完成一件事要分几个步骤,而无论哪一个步骤,都只是完成这件事的一部分,只有每一步都完成了,这件事才得以完成,这里运用乘法原理,简称为“分步----乘法”。

三、加乘法原理的综合应用

有时候,做某件事有几类方法,而每一类方法又要分几个步骤完成。在计算做这件事的方法时,既要用到加法原理,也要用到乘法原理,这就是加乘法原理的综合应用。

例:从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走,那么,从甲地到丙地共有多少种走法?

解析:从甲地到丙地共有两大类不同的走法:可以直接从甲地到丙地,也可以从甲地先到乙地再到丙地,选择任何一类方法,都可以从甲地到丙地,符合加法原理;而在第二类方法中(即从甲地先到乙地再到丙地),又分两步完成:第一步从甲地先到乙地,有4种走法,第二步再从乙地到丙地,有2种走法,这里的任何一种方法都不能完成从甲地到丙地这件事,符合乘法原理,这时共有4×2=8种走法。

所以从甲地到丙地总的走法=第一类方法+第二类方法 =3+4×2=11(种) 四、加法原理和乘法原理的应用

例1.(数字排列问题)用数字1、2、3、4、5可以组成多少个没有重复数字的三位数?

解析:组成一个三位数,要分三个步骤,先选百位数,再选十位数,最后选个位数,使用乘法原理

5×4×3=60(个)

例2.(数字排列问题)一种电子表6点24分30秒时,显示数字是:6:2430,那么从8点到9点这段时间里,此表5个数字都不相同的情况一共有多少种?

解析:在8点到9点间,电子表的第一位数字肯定8,在这段时间内是固定不变的,可以不考虑;第2位和第4位的取值范围只能是0、1、2、3、4、5,第3位和第5位只能从0、1、2、3、4、5、6、7、9。题中要求5个数字各不相同。所以我们要分开来考虑:

①第2位到第5位只取0----5中的数,有6×5×4×3=360种情况

②第2位和第4位只取0---5中的数,而第3位和第5位只取6、7、9中的数,有6×5×3×2=180种情况

③第2位、第3位和第4位只取0---5中的数,第5位只取6、7、9中的数,有6×5×4×3=360种情况

④第2位、第4位和第5位只取0---5中的数,第3位只取6、7、9中的数,有6×5×4×3=360种情况

所以,此表在8到9点间5个数字不同的情况共有:360+180+360+360=1260种 例3.(数字排列问题)从1到400的所有自然数中,不含数字3的自然数有多少个? 解析:在一位数前面添两个零,如把2写成002;在两位数前面添一个零,如把12写成012,这样,1—400中的数全成了“三位数”了,除去数字400外,考虑不含数字“3”的这样的“三位数”的个数,分三步考虑:百位、十位、个位上不含数字“3”,符合乘法原理。百位上可取0、1、2,有三种取法;十位上都可取0、1、2、4、5、6、7、8、9,有9种取法;个位与十位情况一样,也有9种取法。根据乘法原理,这样的数有:3×9×9=243(个)。数“000”不合要求,另外还需要补上符合要求的数“400”,所以不含数字“3”的自然数有:243-1+1=243(个);(提示:这243个数中,有首位是“0”的,把“0”删掉,就成了一位数和两位数,不影响最后的个数。)

例4.(站队排列问题)有6个同学排成一排照相,共有多少种不同的站法? 解析:6人中任何一位的位臵换了,就是一种站法。把这6个位臵用字母表示为:A、B、C、D、E、F。要排成一排,要分六步,依次排A、B、C、D、E、F这六个位臵,使用乘法原理;A位臵中有6种站法,B位臵中就只剩5种站法、、、、、如此下去,F位臵上就只剩1种站法,根据乘法原理,总的站法是:6×5×4×3×2×1=720种不同的站法

思考:看看下题与例4有何区别,又如何解答

A、B、C、D、E 5人排成一排,如果C不站在中间,一共有多少有种不同的排法? 例5.(取物排列问题)有5件不同的上衣,3条不同的裤子,4顶不同的帽子,从中取出一顶帽子、一件上衣和一条裤子配成一套装束,最多有多少种不同的装束?

解析:要完成一套装束要分三步完成,先取帽子,再取上衣,最后取裤子,而每一步分别有4、5、3种不同的方法,根据乘法原理,共有4×5×3=60种不同的装束

例6.(信号排列问题)有5面颜色不同的小旗,任意取3面排成一行表示一种信号,问:一共可以表示多少种不同的信号?

解析:一种信号上有三个位臵,要完成一种信号要分三步选好这三个位臵上的小旗。而每个位臵上依次有5、4、3种不同的选小旗的选法,根据乘法原理,一共可以表示:5×4×3=60种不同的信号。

例7.(涂色问题)如图,用红、绿、蓝、黄四色去涂编号为1、2、3、4号的长方形,要求任何相邻的两个长方形的颜色都不相同,一共有多少种不同的涂法?

解析:要分4种情况考虑:

① 1、2、3、4号长方形颜色都不相同,根据乘法原理,有4×3×2×1=24种涂法 ②只有1、4号长方形同色,有4×3×2=24种

③只有2、3号长方形同色,有4×3×2=24种 ④2、4和1、3号长方形分别同色,有4×3=12种 最后用加法原理

共有24+24+24+12=84种不同的涂法

例8.深圳市的电话号码全是8位数,若前3位只能用1----9这9个数字,则深圳市可以安装多少台不同的电话号码的电话?

解析:要确定一个电话号码,就必须确定8位数上各个位臵的数字,要分八个步骤完成。使用乘法原理。根据题目要求,先确定电话号码前3位数字的取法,由于数字可以重复,前3位上的每一位臵上都可以取1、2、3、4、5、6、7、8、9中的一个数,各有9种取法。电话号码中的后5位的每一个位臵上都可以取0、1、2、3、4、5、6、7、8、9,各有10种取法。

根据乘法原理,共有不同的电话号码的电话:9×9×9×10×10×10×10×10=72900000台

例9.(棋子排列问题)如图,现在要把A、B、C、D、E 5个棋子放在方格里,每行和每列只能出现一个棋子,一共有多少种放法?

解析:要将5个棋子放入格子中,要分5步完成。第一步先放A,有5×5=25个方格就有25种不同的放法;第二步放B,对应A的放法,由于不能在同一行与同一列,B放的行数和列数都会减少1,所以只能放在4×4=16个格子里,有16种放法;同理可推出,第三步放C,有3×3=9种放法;第四步放D,有2×2=4种放法;第五步放E,有1×1=1种放法。根据乘法原理。总的放法有:25×16×9×4×1=14400种

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2017~2018学年度青岛版五年级数学上册第七单元折线统计图教学设(8)在线全文阅读。

2017~2018学年度青岛版五年级数学上册第七单元折线统计图教学设(8).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/373923.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: