第二章 数控编程方法
第一节 手工编程
手工编程是指利用一般的计算工具,通过各种数学方法,人工进行道具轨迹的运算,并进行指令编制。这种编程方法不需要计算机、编程器、编程软件等辅助设备,只需要有合格的编程人员即可。其优点是比较简单,对机床操作人员来说比较容易掌握且适应性较强;缺点是编程要花费大量时间。
第二节 自动编程
自动编程也称为计算机辅助编程,是指用计算机或编程器编制数控加工程序。自动编程的大部分工作都由计算机完成,如坐标值的计算、零件加工程序单的编写等。自动编程方法还可以通过计算机或自动绘图仪进行刀具运动轨迹的图形检查,从而及时验证程序的正确性。自动编程的优点在于大大减轻了编程人员的劳动强度,效率提高几十倍乃至上百倍,同时解决了手工编程无法解决的复杂零件的编程难题。
2
第三章 数控加工程序编程的内容与步骤
第一节 数控编程过程的内容
数控编程的主要内容有零件图的工艺分析,工艺方案的确定,加工轨迹坐标的数学计算,零件加工程序清单的编写,程序的输入、校验与首件试切。典型的数控编程过程如图4.1所示。
图4.1数控编程过程流程图
第二节 数控编程步骤
在数控编程之前,编程员应了解所用数控铣床的规格、性能、数控系统所具备的功能及编程指令格式等。根据零件形状尺寸及其技术要求编写程序。
(1)零件图的工艺分析
根据零件图的形状精度、尺寸精度、位置精度以及表面粗糙度等要求确定零件的加工方案,如加工方法的选择,加工顺序的安排,装夹方式的确定等。
(2)数学计算
为使数学计算更加方便,一般根据零件的几何特征建立一个工件坐标系,相对于该坐标系计算加工轨迹上各点的坐标值。对于形状比较简单的零件的加工来说,需要计算出几何元素的起点、终点、圆弧的圆心、两几何元素的交点或切点的坐标值。
3
(3)编写零件加工程序单
根据数控系统规定的指令代码及程序段格式,编写加工程序单,填写有关的工艺文件,如数控加工工序卡、数控刀具卡、数控加工程序单等。
(4)输入程序
通过键盘、光盘、磁盘等将程序输入到铣床的数控系统。 (5)程序校验与首件试切
在数控仿真系统上仿真加工过程,空运行观察进给路线是否正确,为进一步检验被加工零件的加工精度,还要进行零件的首件试切。
4
第四章 设计说明书
第一节 工艺分析与选择
图5.1 工件图
该零件图主要由平面、孔系及外轮廓组成,内孔表面的加工方法有钻孔、扩孔、铰孔、镗孔、拉孔、磨孔及光加工方法选择原则,中间¢15孔的尺寸公差为H7,表面粗糙度要求较高,可采用钻——粗镗——精镗方案。两端¢10孔处没有尺寸公差要求,可采用自由尺寸公差IT11-IT12处理,表面粗糙度要求不高,可采用钻¢8——扩孔¢10的方案;平面轮廓与零件表面凸台常采用的加工方法有数控铣、线切割及磨削等。在本设计中,平面、外轮廓表面与零件表面凸台粗糙度要求Ra6.3mm,
5
可采用粗铣——精铣方案。图中位置精度要求较高的是底面与孔轴线之间的垂直度,在加工过程中应重点保证。
第二节 确定装夹方案
由于夹具确定了零件在数控铣床坐标系中的位置,因而根据要求夹具能保证零件在铣床坐标系的正确坐标方向,同时协调零件与铣床坐标系的尺寸。根据零件的结构特点,加工上表面,¢60外圆及其台阶面和孔系时可选用一面两孔定位方式,即以底面、¢4H7和一个¢13孔定位,选择上述装夹方式结构相对简单,能保证加工要求,便于实施。
第三节 确定加工顺序
加工顺序的选择直接影响到零件的加工质量、生产效率和加工成本。按照基面先行、先面后孔、先主后次、先粗后精的原则确定加工顺序,即粗加工定位基准面(底面)——粗、精加工上表面———外圆及其台阶面——外轮廓铣削——精加工底面并保证尺寸。
第四节 刀具选择
刀具的选择是数控加工中重要的工艺内容之一,它不仅影响机床的加工效率,而且直接影响加工质量。编程时,选择刀具通常要考虑机床的加工能力、工序内容、工件材料等因素。
与传统的加工方法相比,数控加工对刀具的要求更高,不仅要求精度高、刚度高、耐用度高,而且要求尺寸稳定、安装调整方便。这就要求采用新型优质材料制造数控加工刀具,并优选刀具参数。
选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸和形状相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀,铣削平面时应选硬质合金刀片铣刀;加工凸台、凹槽时,选高速钢立铣刀,对一些主体型面和斜角轮廓形的加工,常采用球头铣刀、环形铣刀、鼓形刀、锥形刀和盘形刀。曲面加工常采用球头铣刀,但加
6
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库端盖零件的数控铣床铣削编程与加工(2)在线全文阅读。
相关推荐: