深度成正比,按变力的功的定义得两次功的表达式,并由功相等的关系即可求解.
解 因阻力与深度成正比,则有F=kx(k 为阻力系数).现令x0=1.00 ×10 -2 m,第二次钉入的深度为Δx,由于钉子两次所作功相等,可得
?x00kxdx??x0?Δxx0kxdx
Δx=0.41 ×10 -2 m
3 -22 一质量为m 的地球卫星,沿半径为3RE 的圆轨道运动, RE为地球的半径.已知地球的质量为mE.求:(1) 卫星的动能;(2) 卫星的引力势能;(3) 卫星的机械能.
分析 根据势能和动能的定义,只需知道卫星的所在位置和绕地球运动的速率,其势能和动能即可算出.由于卫星在地球引力作用下作圆周运动,由此可算得卫星绕地球运动的速率和动能.由于卫星的引力势能是属于系统(卫星和地球)的,要确定特定位置的势能时,必须规定势能的零点,通常取卫星与地球相距无限远时的势能为零.这样,卫星在特定位置的势能也就能确定了.至于卫星的机械能则是动能和势能的总和.
解 (1) 卫星与地球之间的万有引力提供卫星作圆周运动的向心力,由牛顿定律可得
mEmv2 G?m23R?3RE?E则 Ek?mv2?G12mEm 6RE(2) 取卫星与地球相距无限远(r→∞)时的势能为零,则处在轨道上的卫星所具有的势能为
EP??GmEm 3RE(3) 卫星的机械能为
E?Ek?EP?GmEmmmmm?GE??GE 6RE3RE6RE3 -23 如图(a)所示,天文观测台有一半径为R 的半球形屋面,有一
冰块从光滑屋面的最高点由静止沿屋面滑下,若摩擦力略去不计.求此冰块离开屋面的位置以及在该位置的速度.
题 3-23 图
分析 取冰块、屋面和地球为系统,由于屋面对冰块的支持力FN始终与冰块运动的方向垂直,故支持力不作功;而重力P又是保守内力,所以,系统的机械能守恒.但是,仅有一个机械能守恒方程不能解出速度和位置两个物理量;因此,还需设法根据冰块在脱离屋面时支持力为零这一条件,由牛顿定律列出冰块沿径向的动力学方程.求解上述两方程即可得出结果.
解 由系统的机械能守恒,有
mgR?12mv?mgRcosθ (1) 2根据牛顿定律,冰块沿径向的动力学方程为
mv2mgRcosθ?FN? (2)
R冰块脱离球面时,支持力FN =0,由式(1)、(2)可得冰块的角位置
θ?arccos2?48.2o 3冰块此时的速率为
v?gRcosθ?2Rg 3v 的方向与重力P 方向的夹角为
α=90° - θ =41.8°
3 -24 如图所示,把质量m =0.20 kg 的小球放在位置A 时,弹簧被压缩Δl =7.5 ×10 -2 m.然后在弹簧弹性力的作用下,小球从位置A 由静止被释放,小球沿轨道ABCD 运动.小球与轨道间的摩擦不计.已?是半径r =0.15 m 的半圆弧,AB 相距为2r.求弹簧劲度系数知BCD的最小值.
题 3-24 图
分析 若取小球、弹簧和地球为系统,小球在被释放后的运动过程中,只有重力和弹力这两个保守内力作功,轨道对球的支持力不作功,因此,在运动的过程中,系统的机械能守恒.运用守恒定律解题时,关键在于选好系统的初态和终态.为获取本题所求的结果,初态选在压缩弹簧刚被释放时刻,这样,可使弹簧的劲度系数与初态相联系;而终态则取在小球刚好能通过半圆弧时的最高点C 处,因为这时小球的速率正处于一种临界状态,若大于、等于此速率时,小球定能沿轨道继续向前运动;小于此速率时,小球将脱离轨道抛出.该速率则可根据重力提供圆弧运动中所需的向心力,由牛顿定律求出.这样,再由系统的机械能守恒定律即可解出该弹簧劲度系数的最小值.
解 小球要刚好通过最高点C 时,轨道对小球支持力FN =0,因此,有
2mvcmg? (1)
r取小球开始时所在位置A 为重力势能的零点,由系统的机械能守恒定律,有
1122k?Δl??mg?3r??mvc (2) 22由式(1)、(2)可得
k?7mgr?366N?m?1 2?Δl?3 -25 如图所示,质量为m、速度为v 的钢球,射向质量为m′的靶,靶中心有一小孔,内有劲度系数为k 的弹簧,此靶最初处于静止状态,但可在水平面上作无摩擦滑动.求子弹射入靶内弹簧后,弹簧的最大压缩距离.
题 3-25 图
分析 这也是一种碰撞问题.碰撞的全过程是指小球刚与弹簧接触直至弹簧被压缩到最大,小球与靶刚好到达共同速度为止,在这过程中,小球和靶组成的系统在水平方向不受外力作用,外力的冲量为零,因此,在此方向动量守恒.但是,仅靠动量守恒定律还不能求出结果来.又考虑到无外力对系统作功,系统无非保守内力作功,故系统的机械能也守恒.应用上述两个守恒定律,并考虑到球与靶具有相同速度时,弹簧被压缩量最大这一条件,即可求解.应用守恒定律求解,可免除碰撞中的许多细节问题.
解 设弹簧的最大压缩量为x0 .小球与靶共同运动的速度为v1 .由动量守恒定律,有
mv??m?m??v1 (1)
又由机械能守恒定律,有
121122mv??m?m??v1?kx0 (2) 222由式(1)、(2)可得
x0?mm?v ???km?m3 -26 质量为m 的弹丸A,穿过如图所示的摆锤B后,速率由v 减少到
v /2.已知摆锤的质量为m′,摆线长度为l,如果摆锤能在垂直平面内完成一个完全的圆周运动,弹丸速度v的最小值应为多少?
题 3-26 图
分析 该题可分两个过程分析.首先是弹丸穿越摆锤的过程.就弹丸与摆锤所组成的系统而言,由于穿越过程的时间很短,重力和的张力
在水平方向的冲量远小于冲击力的冲量,因此,可认为系统在水平方向不受外力的冲量作用,系统在该方向上满足动量守恒.摆锤在碰撞中获得了一定的速度,因而具有一定的动能,为使摆锤能在垂直平面内作圆周运动,必须使摆锤在最高点处有确定的速率,该速率可由其本身的重力提供圆周运动所需的向心力来确定;与此同时,摆锤在作圆周运动过程中,摆锤与地球组成的系统满足机械能守恒定律,根据两守恒定律即可解出结果.
解 由水平方向的动量守恒定律,有
mv?mv?m?v? (1) 2为使摆锤恰好能在垂直平面内作圆周运动,在最高点时,摆线中的张力FT=0,则
2m?v?hm?g? (2)
l式中v′h 为摆锤在圆周最高点的运动速率.
又摆锤在垂直平面内作圆周运动的过程中,满足机械能守恒定律,故有
112m?v??2m?gl?m?v?h (3) 22解上述三个方程,可得弹丸所需速率的最小值为
v?2m? m5gl3 -27 两质量相同的物体发生碰撞,已知碰撞前两物体速度分别为:
?v0i和v0j,碰撞后一物体速度为?v0i,求:(1)碰撞后另一物体的
速度v;(2)碰撞中两物体损失的机械能共为多少?
分析 本题可直接运用动量守恒定律的矢量式求解,由于不是完全弹性碰撞,必定有部分机械能转化为两物体的内能. 解 (1)由动能守恒得
?mv0i?mv0j??mv0i?mv 2碰撞后另一物体速度为
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库物理学教程(第二版)上册3--4单元课后习题答案详解(4)在线全文阅读。
相关推荐: