概率论与数理统计期末试卷及答案
一.填空题(每空题2分,共计60分)
1、A、B是两个随机事件,已知p(A)?0.4,P(B)?0.5,p(AB)?0.3,则p(A?B)? 0.6 , p(A-B)? 0.1 ,P(A?B)= 0.4 , p(AB)?0.6。
2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2只,则第一次、
第二次取红色球的概率为: 1/3 。(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。 3、设随机变量X服从B(2,0.5)的二项分布,则p?X?1??0.75, Y 服从二项分布B(98, 0.5), X与Y相互独立, 则X+Y服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、
乙厂的产品分别占60%、40%的一批产品中随机抽取一件。 (1)抽到次品的概率为: 0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量(X,Y)的分布律如右,则a?0.1, E(X)?0.4,
X与Y的协方差为: - 0.2 , Z?X?Y2的分布律为:
X Y -1 1 0 1 0.2 0.3 0.4 a z 概率 1 2 0.6 0.4
6、若随机变量X~N(2, 4)且?(1)?0.8413,?(2)?0.9772,则P{?2?X?4}?0.815 ,
。 Y?2X?1,则Y~N( 5 , 16 )
7、随机变量X、Y的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X、Y相互独立,则:
E(2X?Y)? - 4 ,D(2X?Y)? 6 。
(X?Y)? 30 (X)?25,D(Y)?1,Cov(X,Y)?2,则D8、设D9、设X1,?,X26是总体N(8,16)的容量为26的样本,X为样本均值,S2为样本方差。则:X~N
(8 , 8/13 ),
252X?8S~?2(25),~ t(25)。 16s/25?ax2, 0?x?1二、(6分)已知随机变量X的密度函数f(x)??
0 , 其它?求:(1)常数a, (2)p(0.5?X?1.5)(3)X的分布函数F(x)。
解:(1)由
?????f(x)dx?1,得a?3 2’
(2) p(0.5?X?1?5)=
?1..50.5f(x)dx??3x2dx?0.875 2’
0.51 x?0?0 ? (3) F(x)??x3, 2’ 0?x?1?1 , 1?x??2y, 0?x?1,0?y?1三、(6分)设随机变量(X,Y)的联合概率密度为:f(x,y)??
0 , 其它?求:(1)X,Y的边缘密度,(2)讨论X与Y的独立性。 解:(1) X,Y的边缘密度分别为:
1?0?x?1??02ydy?1 fX(x)??? 其他 ?0 4’
??1? 0?y?1?f(x,y)dx??02ydx?2y,fY(y)?????? 其他?0 (2)由(1)可见
, 可知: X,Y相互独立 2’ f(x,y)?f(?f(Xx)Yy)
一. 填空题(每小题2分,共计60分)
1. 设随机试验E对应的样本空间为S。 与其任何事件不相容的事件为 不可能事件, 而与其任何事件相互独立的事件为 必然事件;设E为等可能型试验,且S包含10个样本点,则按古典概率的定义其任一基本事件发生的概率为 1/10。
2.P(A)?0.4,P(B)?0.3。若A与B独立,则P(A?B)? 0。28 ;若已知A,B中至少有一个事件发生的概率为0.6,则P(A?B)? 0.3,P(AB)? 1/3 。
3、一个袋子中有大小相同的红球5只黑球3只,从中不放回地任取2只,则取到球颜色不同的概率为: 15/28。
若有放回地回地任取2只,则取到球颜色不同的概率为: 15/32 。 4、E(X)?D(X)?1。若X服从泊松分布,则P{X?0}?1?e?1;若
X服从均匀分布,则P{X?0}? 0 。
5、设X ~N(?,?2),且P{X?2}?P{X?2}, P{2?X?4}?0.3,则?? 2 ;P{X?0}? 0.8 。
6、某体育彩票设有两个等级的奖励,一等奖为4元,二等奖2元,假设中一、二等奖的概率分别为0.3和0.5, 且每张彩票卖2元。是否买此彩票的明智选择为: 买 (买,不买或无所谓)。 7、若随机变量X~U(1,5),则
p?〈0X〈4?? 0.75 ;E(2X?1)?__7___,
D(3X?1)? 12 .
8、设
6X~b(n,p),E(X)?2.4,D(X)?1.44,则
P{X?n}?0.43,并简化计算
22?6?k6?k??6?0.4?0.6?(6?0.4)?7.2。 k0.40.6???k?k?0??9、随机变量X、Y的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X、Y相互独立,则:E(2X?Y)?
-4 ,D(2X?Y)? 6 。
10、设X1,?,X16是总体N(20,4)的容量为16的样本,X为样本均值,S为样本方差。
则:X~N(20, 1/4 ),pX?20?1= 0.0556 ,
2??X?20152S~?2(15),~ t(15)。 16s/15此题中?(2)?0.9772。
??e??x, x?0111、随机变量X的概率密度f(x)?? ,则称X服从指数分布,E(X)?。
? x?0?0, 13、设二维随机向量(X,Y)的分布律是: 则X的方差D(X)? 0.21 ;
X Y 0 1 0 1 0.4 0.3 0.3 0 X与Y的相关系数为:?XY? 3/7 。
二、 (7分)甲、乙、丙三个工厂生产同一种零件,设甲厂、乙厂、丙厂的次品率分别为0.2,0.1,0.3.现从
由甲厂、乙厂、丙厂的产品分别占15%,80%,5%的一批产品中随机抽取一件,发现是次品,求该次品为甲厂生产的概率.
解:设A1,A2,A3分别表示产品取自甲、乙、丙厂, 有:
p(A1)?15%,P(A2)?80%,P(A3)?5% 2’
A1)?0.2,P(BA2)?0.1,P(BA3)?0.3, 2’
B 表示取到次品,p(B由贝叶斯公式:p(A1B)=
p(A1)?P(BA1)(/?p(Ak)?P(BAk)?0.24 4’
k?13三、(7分)已知随机变量X的密度函数f(x)???ax, 0?x?1
, 其它?0 求:(1)常数a, (2)p(0?X?0.5)(3)X的分布函数F(x)。 解:(1)由 (2)
?????f(x)dx?1,得a?2 2’
0.50.5p(0.?X?1?5)=?f(x)dx??2xdx?0.25 3’
00 x?0?0 ?20?x?1 2’ (3) F(x)??x, ?1 , 1?x?四、(7分)设随机变量(X,Y)的联合概率密度为:f(x,y)??求:(1)X,Y的边缘密度,(2)由(1)判断X,Y的独立性。 解:(1) X,Y的边缘密度分别为:
??1?f(x,y)dy? 0?x?1??04xydy?2x,fX(x)?????? 其他 ?0 5’
??1? 0?y?1?f(x,y)dx??04xydx?2y,fY(y)?????? 其他?0 ?4xy, 0?x?1,0?y?1
, 其它?0 (2)由(1)可见
, 可知: X,Y相互独立 2’ f(x,y)?f(?f(Xx)Yy)
七、(5分)某人寿保险公司每年有10000人投保,每人每年付12元的保费,如果该年内投保人死亡,保险公司应付1000元的赔偿费,已知一个人一年内死亡的概率为0.0064。用中心极限定理近似计算该保险公司一年内的利润不少于48000元的概率。已知?(1)?0.8413,?(2)?0.9772。 解:设X为该保险公司一年内的投保人死亡人数,则X∽B(10000,0.0064)。 该保险公司的利润函数为:L?120000?1000?X。 2‘
}?P{120000?1000?X?48000}?P{X?72} 所以P{L?48000 ?P{X?6410000?0.0064?0.9936?72?64}用中心极限定理
7.996 ??(1)?0.8413 3‘
答:该保险公司一年内的利润不少于48000元的概率为0。8413
二. 填空题(每小题2分,共计60分)
1、A、B是两个随机事件,已知p(A)?0.5,p(B)?0.3,则
a) 若A,B互斥,则p(A- B)? 0.5 ; b) 若A,B独立,则p(A?B)? 0.65 ; c) 若p(A?B)?0.2,则p(AB)? 3/7 . 2、袋子中有大小相同的红球7只,黑球3只,
(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 7/15 。 (2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。
(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 .
3、设随机变量X服从泊松分布?(?),p{X?7}?P{X?8},则E?X?? 8 . 4、设随机变量X服从B(2,0. 8)的二项分布,则p?X?2?? 0.64 , Y服从B(8,0. 8)的二项分布, 且X与Y相互独立,则P{X?Y?1}=1- 0.210,E(X?Y)?8 。
5 设某学校外语统考学生成绩X服从正态分布N(75,25),则该学校学生的及格率为 0.9987 ,成绩超过85分的学生占比P{X?85}为 0.0228 。
,?(2)?0.9772,?(3)?0.9987. 其中标准正态分布函数值?(1)?0.84136、设二维随机向量(X,Y)的分布律是有 则a?_0.1_,X的数学期望E(X)?___0.4_______,X与Y?xy?___-0.25______。
7、设
X 0 1 Y -1 0.3 0.3 0.3 a 1 的相关系数
X1,...,X16及Y1,...,Y8分别是总体N(8,16)的容量为
22分别为样本方差。 ,S216,8的两个独立样
本,X,Y分别为样本均值,S1则:X~ N(8,1) ,X?Y~ N(0,1.5) ,pX?Y?21.5= 0.0456 ,
??S121522S1~?(15),2~ F(15,7) 。 16S2,?(2)?0.9772,?(3)?0.9987 此题中?(1)?0.84138、设X1,.X2,X3是总体X的样本,下列的统计量中,A,B,C 是E(X)的无偏统计量,E(X)的无偏统
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库概率论与数理统计期末试卷及答案(最新7)在线全文阅读。
相关推荐: