1 随x的增大,y的值有什么变化? ○
2 能否看出函数的最大、最小值? ○
3 函数图象是否具有某种对称性? ○
y 2. 画出下列函数的图象,观察其变化规律:
1.f(x) = x
1 1 从左至右图象上升还是下降 ______? ○
2 在区间 ____________ 上,随着x的增 ○
-1 1 x 大,f(x)的值随着 ________ . -1 y 2.f(x) = -2x+1
1 从左至右图象上升还是下降 ______? ○1 2 在区间 ____________ 上,随着x的增 ○
-1 1 x 大,f(x)的值随着 ________ .
-1 3.f(x) = x2 y 1在区间 ____________ 上,f(x)的值随 ○
着x的增大而 ________ . 1 2 在区间 ____________ 上,f(x)的值随 ○
-1 1 x 着x的增大而 ________ .
-1 十三、 新课教学 (一)函数单调性定义
1.增函数 一般地,设函数y=f(x)的定义域为I, 如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 思考:仿照增函数的定义说出减函数的定义.(学生活动) 注意: 1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○ 2 必须是对于区间D内的任意两个自变量x1,x2;当x1 2.函数的单调性定义 如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间: 3.判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: 1 任取x1,x2∈D,且x1 2 作差f(x1)-f(x2); ○ 3 变形(通常是因式分解和配方)○; 4 定号(即判断差f(x1)-f(x2)的正负)○; 5 下结论(即指出函数f(x)在给定的区间D上的单调性)○. (二)典型例题 例1.(教材P34例1)根据函数图象说明函数的单调性. 解:(略) 巩固练习:课本P38练习第1、2题 例2.(教材P34例2)根据函数单调性定义证明函数的单调性. 解:(略) 巩固练习: 1 课本P38练习第3题; ○ 2 证明函数y?x?○ 1在(1,+∞)上为增函数. x例3.借助计算机作出函数y =-x2 +2 | x | + 3的图象并指出它的的单调区间. 解:(略) 思考:画出反比例函数y?1的图象. x1 这个函数的定义域是什么? ○ 2 它在定义域I上的单调性怎样?证明你的结论. ○ 说明:本例可利用几何画板、函数图象生成软件等作出函数图象. 十四、 归纳小结,强化思想 函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步: 取 值 → 作 差 → 变 形 → 定 号 → 下结论 十五、 作业布置 1. 书面作业:课本P45 习题1.3(A组) 第1- 5题. 2. 提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y), 1 求f(0)、f(1)的值; ○ 2 若f(3)=1,求不等式f(x)+f(x-2)>1的解集. ○ 课题:§1.3.1函数的最大(小)值 教学目的:(1)理解函数的最大(小)值及其几何意义; (2)学会运用函数图象理解和研究函数的性质; 教学重点:函数的最大(小)值及其几何意义. 教学难点:利用函数的单调性求函数的最大(小)值. 教学过程: 十六、 引入课题 画出下列函数的图象,并根据图象解答下列问题: 1 说出y=f(x)的单调区间,以及在各单调区间上的单调性; ○ 2 指出图象的最高点或最低点,并说明它能体现函数的什么特征? ○ (1)f(x)??2x?3 2 (2)f(x)??2x?3 x?[?1,2] 2(4)f(x)?x?2x?1 x?[?2,2] (3)f(x)?x?2x?1 十七、 新课教学 (一)函数最大(小)值定义 1.最大值 一般地,设函数y=f(x)的定义域为I,如果存在实数M满足: (1)对于任意的x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0) = M 那么,称M是函数y=f(x)的最大值(Maximum Value). 思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义.(学生活动) 注意: 1 函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M; ○ 2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)○ ≤M(f(x)≥M). 2.利用函数单调性的判断函数的最大(小)值的方法 1 利用二次函数的性质(配方法)求函数的最大(小)值 ○ 2 利用图象求函数的最大(小)值 ○ 3 利用函数单调性的判断函数的最大(小)值 ○ 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); (二)典型例题 例1.(教材P36例3)利用二次函数的性质确定函数的最大(小)值. 解:(略) 说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值. 巩固练习:如图,把截面半径为 25cm的圆形木头锯成矩形木料, 25 如果矩形一边长为x,面积为y 试将y表示成x的函数,并画出 函数的大致图象,并判断怎样锯 才能使得截面面积最大? 例2.(新题讲解) 旅 馆 定 价 一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下: 房价(元) 160 140 120 100 住房率(%) 55 65 75 85 欲使每天的的营业额最高,应如何定价? 解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系. 设y为旅馆一天的客房总收入,x为与房价160相比降低的房价,因此当房价为 (160?x)元时,住房率为(55?x?10)%,于是得 20xy=150·(160?x)·(55??10)%. 20x?10)%≤1,可知0≤x≤90. 由于(55?20因此问题转化为:当0≤x≤90时,求y的最大值的问题. 将y的两边同除以一个常数0.75,得y1=-x2+50x+17600. 由于二次函数y1在x=25时取得最大值,可知y也在x=25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元). 所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的) 例3.(教材P37例4)求函数y?2在区间[2,6]上的最大值和最小值. x?1解:(略) 注意:利用函数的单调性求函数的最大(小)值的方法与格式. 巩固练习:(教材P38练习4) 十八、 归纳小结,强化思想 函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步: 取 值 → 作 差 → 变 形 → 定 号 → 下结论 十九、 作业布置 3. 书面作业:课本P45 习题1.3(A组) 第6、7、8题. 提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短? B A 教学目的:(1)理解函数的奇偶性及其几何意义; C (2)学会运用函数图象理解和研究函数的性质; (3)学会判断函数的奇偶性. 教学重点:函数的奇偶性及其几何意义. D 教学难点:判断函数的奇偶性的方法与格式. 教学过程: 二十、 引入课题 1.实践操作:(也可借助计算机演示) 取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题: 1 以y轴为折痕将纸对折,○并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形; 问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系? 答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称; (2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等. 2 以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的背面(即第三象限)○ 画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形: 问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系? 答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称; 课题:§1.3.2函数的奇偶性 (2)若点(x,f(x))在函数图象上,则相应的点(-x,-f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标也一定互为相反数. 2.观察思考(教材P39、P40观察思考) 二十一、 新课教学 (一)函数的奇偶性定义 1中的图象关于y轴对称的函数即是偶函数,2中的图象关于原点象上面实践操作○操作○ 对称的函数即是奇函数. 1.偶函数(even function) 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (学生活动):仿照偶函数的定义给出奇函数的定义 2.奇函数(odd function) 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数. 注意: 1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任○ 意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称). (二)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称; 奇函数的图象关于原点对称. (三)典型例题 1.判断函数的奇偶性 例1(.教材P36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤) 解:(略) 总结:利用定义判断函数奇偶性的格式步骤: 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f(-x)与f(x)的关系; ○ 3 作出相应结论: ○ 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 巩固练习:(教材P41例5) 例2.(教材P46习题1.3 B组每1题) 解:(略) 说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数. 2.利用函数的奇偶性补全函数的图象 (教材P41思考题) 规律: 偶函数的图象关于y轴对称; 奇函数的图象关于原点对称. 说明:这也可以作为判断函数奇偶性的依据. 百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库新人教版高中数学必修1教案全套(4)在线全文阅读。
相关推荐: