27.(8分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF. (1)求证:∠C=90°;
(2)当BC=3,sinA=时,求AF的长.
28.(10分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点. (1)求二次函数y=ax2+2x+c的表达式;
第6页(共27页)
(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;
(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
第7页(共27页)
2018年甘肃省定西市中考数学试卷
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.
1.(3分)﹣2018的相反数是( ) A.﹣2018 B.2018
C.﹣
D.
【解答】解:﹣2018的相反数是:2018. 故选:B.
【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.
2.(3分)下列计算结果等于x3的是( ) A.x6÷x2 B.x4﹣x
C.x+x2 D.x2?x
【解答】解:A、x6÷x2=x4,不符合题意; B、x4﹣x不能再计算,不符合题意; C、x+x2不能再计算,不符合题意; D、x2?x=x3,符合题意; 故选:D.
【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.
3.(3分)若一个角为65°,则它的补角的度数为( ) A.25° B.35° C.115° D.125° 【解答】解:180°﹣65°=115°. 故它的补角的度数为115°. 故选:C.
【点评】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.
第8页(共27页)
4.(3分)已知=(a≠0,b≠0),下列变形错误的是( ) A.=
B.2a=3b C.=
D.3a=2b
【解答】解:由=得,3a=2b, A、由原式可得:3a=2b,正确; B、由原式可得2a=3b,错误; C、由原式可得:3a=2b,正确; D、由原式可得:3a=2b,正确; 故选:B.
【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.
5.(3分)若分式A.2或﹣2 B.2
的值为0,则x的值是( ) C.﹣2 D.0
的值为0,
【解答】解:∵分式∴x2﹣4=0, 解得:x=2或﹣2. 故选:A.
【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.
6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:
甲 11.1 1.1 乙 11.1 1.2 丙 10.9 1.3 丁 10.9 1.4 平均数(米) 方差s2 若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( ) A.甲 B.乙 C.丙 D.丁
【解答】解:从平均数看,成绩好的同学有甲、乙, 从方差看甲、乙两人中,甲方差小,即甲发挥稳定, 故选:A.
第9页(共27页)
【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.
7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是( )
A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4 【解答】解:根据题意得△=42﹣4k≥0, 解得k≤4. 故选:C.
【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
8.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为( )
A.5 B. C.7 D.
【解答】解:∵把△ADE顺时针旋转△ABF的位置, ∴四边形AECF的面积等于正方形ABCD的面积等于25, ∴AD=DC=5, ∵DE=2,
∴Rt△ADE中,AE=故选:D.
【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.
9.(3分)如图,⊙A过点O(0,0),C(
=.
,0),D(0,1),点B是x轴下方
第10页(共27页)
⊙A上的一点,连接BO,BD,则∠OBD的度数是( )
A.15° B.30° C.45° D.60° 【解答】解:连接DC,
∵C(,0),D(0,1),
,
∴∠DOC=90°,OD=1,OC=∴∠DCO=30°, ∴∠OBD=30°, 故选:B.
【点评】此题考查圆周角定理,关键是利用三角函数得出∠DCO=30°.
10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
A.①②④ B.①②⑤ C.②③④ D.③④⑤
第11页(共27页)
【解答】解:①∵对称轴在y轴右侧, ∴a、b异号, ∴ab<0,故正确;
②∵对称轴x=﹣=1,
∴2a+b=0;故正确;
③∵2a+b=0, ∴b=﹣2a,
∵当x=﹣1时,y=a﹣b+c<0, ∴a﹣(﹣2a)+c=3a+c<0,故错误;
④根据图示知,当m=1时,有最大值; 当m≠1时,有am2+bm+c≤a+b+c, 所以a+b≥m(am+b)(m为实数). 故正确.
⑤如图,当﹣1<x<3时,y不只是大于0. 故错误. 故选:A.
【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b
第12页(共27页)
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说中考初中2018年甘肃省定西市中考数学试卷及详细答案(2)在线全文阅读。
相关推荐: