【解答】(1)证明:如图1,∵PC=PB, ∴∠PCB=∠PBC,
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
∵四边形ABCD内接于圆, ∴∠BAD+∠BCD=180°, ∵∠BCD+∠PCB=180°, ∴∠BAD=∠PCB, ∵∠BAD=∠BFD, ∴∠BFD=∠PCB=∠PBC, ∴BC∥DF, ∵DE⊥AB, ∴∠DEB=90°, ∴∠ABC=90°, ∴AC是⊙O的直径, ∴∠ADC=90°, ∵BG⊥AD, ∴∠AGB=90°, ∴∠ADC=∠AGB, ∴BG∥CD;
(2)由(1)得:BC∥DF,BG∥CD, ∴四边形BCDH是平行四边形, ∴BC=DH,
在Rt△ABC中,∵AB=∴tan∠ACB=
DH, =
,
∴∠ACB=60°,∠BAC=30°, ∴∠ADB=60°,BC=AC, ∴DH=AC,
①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°, ∴∠AMD+∠ADM=90° ∵DE⊥AB, ∴∠BED=90°, ∴∠BDE+∠ABD=90°,
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
∵∠AMD=∠ABD, ∴∠ADM=∠BDE, ∵DH=AC, ∴DH=OD,
∴∠DOH=∠OHD=80°, ∴∠ODH=20° ∵∠AOB=60°, ∴∠ADM+∠BDE=40°, ∴∠BDE=∠ADM=20°,
②当点O在DE的右侧时,如图3,作直径DN,连接BN, 由①得:∠ADE=∠BDN=20°,∠ODH=20°, ∴∠BDE=∠BDN+∠ODH=40°,
综上所述,∠BDE的度数为20°或40°.
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
18.(2018?温州)如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在BD上. (1)求证:AE=AB.
(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.
【分析】(1)由折叠得出∠AED=∠ACD、AE=AC,结合∠ABD=∠AED知∠ABD=∠ACD,从而得出AB=AC,据此得证;
(2)作AH⊥BE,由AB=AE且BE=2知BH=EH=1,根据∠ABE=∠AEB=∠ADB知cos∠ABE=cos∠ADB=
=,据此得AC=AB=3,利用勾股定理可得答案.
【解答】解:(1)由折叠的性质可知,△ADE≌△ADC, ∴∠AED=∠ACD,AE=AC, ∵∠ABD=∠AED, ∴∠ABD=∠ACD, ∴AB=AC, ∴AE=AB;
(2)如图,过A作AH⊥BE于点H,
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
∵AB=AE,BE=2, ∴BH=EH=1,
∵∠ABE=∠AEB=∠ADB,cos∠ADB=, ∴cos∠ABE=cos∠ADB=, ∴
=.
∴AC=AB=3,
∵∠BAC=90°,AC=AB, ∴BC=3
19.(2018?天门)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM. (1)判断CM与⊙O的位置关系,并说明理由; (2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.
.
【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;
(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
【解答】解:(1)CM与⊙O相切.理由如下: 连接OC,如图, ∵GD⊥AO于点D, ∴∠G+∠GBD=90°, ∵AB为直径, ∴∠ACB=90°, ∵M点为GE的中点, ∴MC=MG=ME, ∴∠G=∠1, ∵OB=OC, ∴∠B=∠2, ∴∠1+∠2=90°, ∴∠OCM=90°, ∴OC⊥CM, ∴CM为⊙O的切线;
(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°, ∴∠1=∠5,
而∠1=∠G,∠5=∠A, ∴∠G=∠A, ∵∠4=2∠A, ∴∠4=2∠G,
而∠EMC=∠G+∠1=2∠G, ∴∠EMC=∠4, 而∠FEC=∠CEM, ∴△EFC∽△ECM, ∴
=
=
,即
=
=,
∴CE=4,EF=, ∴MF=ME﹣EF=6﹣=
.
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
20.(2018?泰州)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.
(1)试判断DE与⊙O的位置关系,并说明理由; (2)过点D作DF⊥AB于点F,若BE=3
,DF=3,求图中阴影部分的面积.
【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;
(2)利用勾股定理结合扇形面积求法分别分析得出答案. 【解答】解:(1)DE与⊙O相切, 理由:连接DO, ∵DO=BO, ∴∠ODB=∠OBD,
∵∠ABC的平分线交⊙O于点D, ∴∠EBD=∠DBO, ∴∠EBD=∠BDO, ∴DO∥BE, ∵DE⊥BC,
∴∠DEB=∠EDO=90°, ∴DE与⊙O相切;
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB, ∴DE=DF=3, ∵BE=3∴BD=
,
=6,
∵sin∠DBF==, ∴∠DBA=30°, ∴∠DOF=60°, ∴sin60°=∴DO=2则FO=
, ,
﹣×
×3=2π﹣
.
=
=
,
故图中阴影部分的面积为:
文档来源于网络,版权属原作者所有,如有侵权请联系删除。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说中考初中2018-2019中考数学试题分类汇编考点29与园有关的位置关系Word版(3)在线全文阅读。
相关推荐: