xln?1?x?????x?1??1??ln???x?1??2????x?1????x?1?1ln1??ln2?????????2????n???n?1?x?1??????1?x?3?n??x?1??1???ln2????1?2nn?1????n?1n????1?1????1n???ln2??ln2???x?1?????x?1???nn?12?n?1?2???n?2?n?2???
例3:将函数f(x)? [ 解]:
x展开成x?1的幂级数。
2x2?7x?4???1x1411?4111??(?)????2?x?1??2x2?7x?4(x?4)(2x?1)9x?42x?19?31?x?131??33???n4?1?2n1?x?1nn(x?1)nnn???(?1)?()(x?1)?4(?1)?2() ???n??27n?0327n?0327n?03x?12(x?1)11?1且-1??1,故收敛区间??x? 3322x例4:将函数f(x)?展开成x的幂级数,并确定其收敛域。
1?2x又,?1??x12x1?n [ 解]:???(2x)??2n?1xn
1?2x21?2x2n?1n?12x?1??11111?x?,x??时,幂级数发散,收敛域为(?,) 222221?x展开成x的幂级数,并确定其收敛域。 1?x2)利用求导或积分进行展开 例1、将函数将函数f(x)?arctan[ 解]:1)f??x??1?1?x?1????1?x?n?2?1?x???1?x????1??1?x?2??1?x?22?1?x???1?x??1?x??222?1 21?x ????1?n?0?x2n ?1?x?1
?? 2)
?x0f??x?dx?????1?x2ndx??n?00n?0xn??1?n2n?1?x2n?1?f?x??f?0???n?0???1?n2n?1?x2n?1
31
?f?0??arctan ?f?x??1?x1?xx?0?arctan1??4
?4???n?0???1?nn2n?1?x2n?1 收敛区间为??1,1? ??n?0?? x??1??2n?1?xn?0??1?n2n?1??1?nn2n?1???1?2n?12n?1???n?0????1?nn2n?1收敛
x?1???2n?1?xn?0n2n?1???1?2n?1??n?0??1?2n?1??1???n?0??1?2n?1收敛
?2n?1?xn?0??1?收敛域??1,1?
3)?f?x???4??n?0???1?n2n?1?x2n?1 收敛域为??1,1?
例2、将函数将函数f(x)?11?x11?xln?arctan?x展开成x的幂级数,并确定其收敛域。 41?x21?x??11111114n[ 解]:1)f??x????????1??1??x?1??x4n 2441?x41?x21?x1?xn?0n?1 ?1?x?1 2)
?x0f??x?dx???n?1?x0?1x4n?14n?1 xdx???x?f?x??f?0???n?14n?1n?14n?14n? ?f?0???1?x?11?x1?ln?arctan?x?1?x?41?x2??x?0?0
?x4n?1x4n?1 ?f?x??f?0??? 收敛区间为??1,1? ??n?14n?1n?14n?1?x1 x??1??发散 ?????n?14n?1n?14n?1n?14n?1??1??x4n?11 x?1??发散 ????n?14n?1n?14n?1n?14n?1?4n?1?4n?1???1?4n?1x4n?1 ?收敛域??1,1?
4n?1n?1?x4n?1 3)?f?x??? 收敛域为??1,1?
n?14n?1? 32
6、利用已知幂函数展开式求和:见上课例题
?x??????xxnxn?12??x??例1、 1) ?n??n?1????ln?1??,?1??1??2?x?2
2??n?1?n?0?n?1??2?n?12?nn?02?x??1nn?1???????1?x??5? ?n?5??n?1?n?05??n?1?n?0nn?1n?1x?x??5ln?1??,?1??1??5?x?5
5?5?4n?1 ???1??ln 5n?1n?0?n?x??1n2n?1???????1?x??3? 2)?2n?1????2n?1?!n?0?2n?1?!n?03n2n?1x?sin,???x???
3??1?32n?1?sin3 ?
n?0?2n?1?!?n??xnxn?1xn 3)????x??xex,???x???
n?1?n?1?!n?0n!n?0n!?3n ??e2
n?0n!?6、富里叶级数:1) 三角函数系正交性: 见教材
a0?2) 富里叶级数: 形如???ancosnx?bnsinnx?,其中
2n?1 an? bn?f?x?cosnxdx, ?n?0,1,2,3,...? ????1?1???f?x?cosnxdx, ?n?1,2,3,...?
??3) 函数展开成富里叶级数: 利用狄利克雷定理与上述公式展开.
例1、将下列周期为2?的函数展开成富里叶级数 f?x????x???x?0;
00?x???
33
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库高数下册知识点罗列(7)在线全文阅读。
相关推荐: