11.5.2 局部阻尼(Local damping)
局部阻尼是FLAC3D静力计算中采用的阻尼形式,但是它的一些特性可以用来进行动力计算。它在振动循环中通过在节点或结构单元节点上增加或减小质量的方法达到收敛,由于增加的单元质量和减小的相等,因此总体来说,系统保持质量守恒。当节点速度的符号改变时增加节点质量,当速度达到最大值(或最小值)时减小节点质量。因此损失的能量?W是最大瞬时应变能W的一定比例,这个比值?W/W,是与频率无关和率无关的。因为?W/W是临界阻尼比D的函数:
局部阻尼的设置命令为:
SET dyn damp local 局部阻尼系数
?L??D
(11-11)
其中,?L为局部阻尼系数,临界阻尼比的取值可以参考瑞利阻尼中的?min。
局部阻尼系数不用求解系统的自振频率,而且相对于瑞利阻尼而言不会减小时间步,从这个意义上来说具有较大的优势。但局部阻尼只适合于简单问题的求解,实践证明设置局部阻尼不能有效地衰减复杂波形的高频部分,计算结果会产生一些高频“噪声”。因此,在使用时需慎重,最好将局部阻尼与瑞利阻尼的结果进行对比分析。
继续沿用例11.4中的保存文件11-4_1.sav,比较瑞利阻尼和局部阻尼的计算结果。瑞利阻尼中临界阻尼比设为5%,根据公式(11-11)可知局部阻尼的阻尼系数为0.1571。
例11.6:局部阻尼的例子
rest 11-4_1.sav
set dyn damp rayleigh 0.05 22.8 set hist_rep=5 solve age=0.5 title
vertical displacement versus time (5% Rayleigh damping) plot show pause rest 11-4_1.sav
set dyn damp local 0.1571 ; = pi * 0.05 set hist_rep=5 solve age=0.5 title
vertical displacement versus time (5% Local damping) plot show
计算结果见图11-14所示,可以看出两种阻尼形式具有相同的计算结果。另外,从时间步上看,瑞利阻尼的时间步为4.9E-4,而局部阻尼的时间步为5.9E-4,局部阻尼的时间步略大于瑞利阻尼,但二者相差并不明显。这是因为瑞利阻尼中质量分量的比例(?值)较小,读者可以通过PRINT dynamic输出动力计算信息了解瑞利阻尼中两种分量的比例。
FLAC3D 3.00Step 142016:02:52 Fri Apr 04 2008Job Title: vertical displacement versus time (5% Rayleigh damping)x10^-4FLAC3D 3.00Step 117916:02:35 Fri Apr 04 2008Job Title: vertical displacement versus time (5% Local damping)x10^-4-1.0-1.0History 1 Z-Displacement Gp 56 Linestyle -9.881e-004 <-> -3.623e-005-2.0History 1 Z-Displacement Gp 56 Linestyle -9.888e-004 <-> -4.737e-005-2.0 Vs. 2 Dynamic Time 2.466e-003 <-> 7.002e-001-3.0 Vs. 2 Dynamic Time 2.970e-003 <-> 6.978e-001-3.0-4.0-4.0-5.0-5.0-6.0-6.0-7.0-7.0-8.0-8.0-9.0-9.0Itasca Consulting Group, Inc.Minneapolis, MN USA 1.0 2.0 3.0x10^-1 4.0 5.0 6.0 7.0
Itasca Consulting Group, Inc.Minneapolis, MN USA 1.0 2.0 3.0 4.0x10^-1 5.0 6.0 瑞利阻尼 局部阻尼
图11-14 瑞利阻尼与局部阻尼的比较
11.5.3 滞后阻尼(Hysteretic damping)
FLAC3D将土动力学中岩土体的滞后特性用阻尼的形式加入到程序中。使用模量衰减系数Ms来描述土体的非线性特性。假设土体为理想粘弹性体,可以从模量衰减曲线上得到归一化的剪应力?:
示为:
Mt???Ms? dMsd? ?Ms??d?d?(11-12)(11-13)
式中,?为剪应变,Ms为归一化的割线模量,Mt为归一化的切线模量。则增量剪切模量G可以表
其中,G0为小应变下的剪切模量。
G?G0Mt
(11-14)
图11-15 模量衰减曲线(Seed & Idriss)
滞后阻尼是与材料无关的阻尼格式,在动力计算中,滞后阻尼可以满足Masing二倍法,从而构造土
体在动力作用下的滞回圈。另外,滞后阻尼的优点是:
? 可以直接采用动力试验中的模量衰减曲线;
? 相对于瑞利阻尼而言,滞后阻尼不影响动力计算的时间步; ? 可以应用于任意的材料模型,且可以与其它阻尼格式同时使用。
滞后阻尼与瑞利阻尼及局部阻尼的设置不同,采用的是初始条件INITIAL命令。
INITIAL damp hyst
FLAC3D中滞后阻尼提供了多种形式的割线模量衰减曲线模型,包括默认模型(default)、S型模型(包括三参数模型Sig3和四参数模型Sig4)以及哈丁模型(Hardin)。下面对这几种模型做简要介绍。
1. 默认模型
默认模型中Ms曲线可以用式(11-15)的三次方程来拟合。
其中
s?L2-L L2-L1Ms=s2(3?2s)
(11-15)
(11-16) (11-17)
L?log10(?)
L1和L2为默认模型的两个参数,表示Ms曲线的循环应变范围。比如L1=-3,L2=1表示Ms曲线中循
环应变的最小值是0.001%(10-3),最大值是10%(101),因此可见默认模型的参数确定较简单,设置方法是:
INITIAL damp hyst default L1 L2
2. S型模型
S型模型包括三参数模型和四参数模型,采用如下的公式来拟合Ms曲线。 Sig3模型包含a,b,x0三个参数:
设置命令为:
INITIAL damp hyst sig3 a b x0
Ms?a
1?exp(-(L-x0)/b)(11-18)
Sig4模型包含a,b,x0和y0四个参数:
设置命令为:
INITIAL damp hyst sig4 a b x0 y0
Ms?y0+a
1?exp(-(L-x0)/b)(11-19)
3. 哈丁模型
滞后阻尼中有一种Hardin / Drnevich模型,采用式(11-20)的双曲线公式来拟合Ms曲线:
Ms?11??/?ref (11-20)
其中,?ref为参考应变,一般取G/Gmax=0.5时的对应的应变值。 哈丁模型只有一个参数,设置命令为: INITIAL damp hyst hardin ?ref
表11-2提供了图11-15中模量衰减曲线的拟合结果,表11-3提供了黏土的模量衰减曲线拟合结果,
读者在使用时可参考。
表11-2 Seed & Idriss模量衰减曲线的拟合结果
数据来源 默认模型 三参数模型 四参数模型 a = 0.9762 a = 1.014 砂土 图11-15 L1 = -3.325 b = -0.4792 L2 = 0.823 x0 = -1.249 y0 = 0.03154 x0 = -1.285 b = -0.4393 哈丁模型 ?ref = 0.06 表11-3 Seed & Idriss模量衰减曲线的拟合结果(2)
数据来源 默认模型 三参数模型 四参数模型 a = 0.922 a = 1.017 L1 = -3.156 粘土 L2 = 1.904 x0 = -0.633 y0 = 0.0823 b = -0.587 x0 = -0.705 b = -0.481 哈丁模型 ?ref = 0.234 注意:滞后阻尼是FLAC新开发的一个技术,在使用过程中读者要反复调试,同时也要注意以下几点:
? 低循环应变下得到的阻尼比要小于试验结果,这会导致低级的噪声,尤其在高频情况下。可以在中心频率上增加一个较小分量的Rayleigh阻尼(比如0.2%刚度比例),这样也不会降低时步。
? 若初始剪应力不为0,剪应力-剪应变曲线可能不匹配,因此在生成初始应力时就要调用Hyst阻尼,这一点至关重要。
? 滞后阻尼不仅会增加能量损失,还会导致在大循环应变下的平均剪切模量的降低,在输入波的基频接近共振频率的时候,可能会导致动力响应的幅值偏大。
? 在设置滞后阻尼之前要做一次弹性无阻尼求解,获得各关键部位发生循环应变的最大水平,若循环应变过大导致剪切模量过多的降低,那么使用滞后阻尼可能会存在问题。
? 即使应变较小,使用塑性模型也会增大应变,因此若模型存在广泛屈服的现象时,不能使用滞后阻尼。
3D
11.5.4 关于阻尼设置的一些讨论
力学阻尼的设置是FLAC3D动力计算中讨论最多的话题,在这些阻尼形式中,瑞利阻尼由于其理论与常规动力分析方法类似,而且实践证明,瑞利阻尼计算得到的加速度响应规律比较符合实际,因此最易为大家所接受,唯一也是最大的不足就是瑞利阻尼的计算时间步太小,导致动力计算时间过长,因此很多用户不得不使用局部阻尼来代替。
滞后阻尼是新版本FLAC3D的一个亮点,但在实际使用过程中读者可以发现使用时存在一定的困难,主要原因是滞后阻尼有过多的使用限制,且目前相关的参考资料极少。作者曾经尝试过一些滞后阻尼的算例,当模型较复杂时,很难得到满意的分析结果,尤其是在处理地震液化分析时更是如此。因此读者在使用滞后阻尼时需要慎重,从简单做起,逐步了解其功能后再应用于实践。
注意:不同的阻尼形式之间可以混合使用;对于不同的材料也可以按照初始条件的方式设臵不同的阻尼形式和参数;动力分析中如果存在结构单元,需要采用SEL set damp命令,指定结构单元的阻尼,否则计算会提示出错。
11.6 网格尺寸的要求
输入波形的频率成分和土体的波速特性会影响波传播的数值精度。Kuhlemeyer和Lysmer(1973)的研究表明,要想精确描述模型中波的传播,那么网格的尺寸?l必须要小于输入波形最高频率对应的波长的1/8到1/10,也就是:
?11??l??~??
?810?(11-21)
式中,?是最高频率对应的波长。
可见在动力计算中,土体的模量越小,即土体越软,最大网格尺寸越小,划分的网格数量越多。注意到,任何离散化的介质都存在能量传播的上限频率,只有当输入荷载的频率小于这个上限频率时,计算结果才有意义。因此上述公式不仅适用于FLAC3D,同样适用于其他基于时域的动力分析程序。 由于输入荷载的最大频率直接影响到单元的最大尺寸,所以对于脉冲荷载、爆炸荷载等这些频率范围很广的荷载形式,需要进行滤波处理,这部分内容在本章的11.7.1节中将会做介绍。
11.7 输入荷载的校正
这里的输入荷载一般指的是地震荷载,因为在地震反应分析中,常使用离散的荷载列表,因此在施加之前有必要进行滤波和基线校正。
11.7.1 滤波
滤波的目的是过滤掉原有波形中的高频分量,因为由式(11-21)可知,地震波的最大频率对网格尺寸的影响较大,最大频率越高,满足精度条件下的网格尺寸越小。采用滤波的方式,可以减小地震波的最大频率,从而增大计算所需的最小网格尺寸,减小单元数量,达到节约计算时间的目的。滤波可以通过OriginPro,SeismoSignal等软件进行,也可以使用FLAC3D提供的FFT.fis函数进行。
11.7.2 基线校正
在FLAC3D地震动力分析中,输入波通常为加速度时程,若将输入的加速度进行积分得到的最终速度和最终位移不为0,则在动力计算结束时模型底部会出现继续的速度和残余的位移,此时需要对加速度时程进行基线校正。即通过在原始加速度时程上增加一个低频率的波形(多项式或周期函数),使最终的速度和位移均为0。基线校正可以通过SeismoSignal软件进行,该软件提供了多种基线校正的方法,建议读者使用。
11.8 动孔压模型与土体的液化
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库FLAC动力分析(5)在线全文阅读。
相关推荐: