杨海 电动力学 第一章 电磁现象的普遍规律 1-1
第一章 电磁现象的普遍规律
本章重点:从特殊到一般,由实验定律加假设总结出麦克斯韦方程。 主要内容:讨论几个定律,总结出静电场、静磁场方程;
找出问题,提出假设,总结真空中麦氏方程; 讨论介质电磁性质,得出介质中麦氏方程; 给出求解麦氏方程的边值关系;
引入电磁场能量,能流并讨论电磁能量的传输。
§1. 电荷和静电场
一、 库仑定律和电场强度
1. 库仑定律
??QQ?r一个静止点电荷Q对另一静止点电荷Q?的作用力为:F?
34??or ⑴ 静电学的基本实验定律 (2)两种物理解释
超距作用: 一个点电荷不需中间媒介直接施力与另一点电荷。 场传递: 相互作用通过场来传递。 对静电情况两者等价。 2. 点电荷电场强度
每一电荷周围空间存在电场:即任何电荷都在自己周围空间激发电场。它的基本性质是:电荷对处在其中的其它电荷具有作用力。
对库仑定律重新解释:描述一个静止点电荷激发的电场对其他任何电荷的电场力。
?描述电场的函数——电场强度定义:试探点电荷F,则
????FQr? E(x)? 3Q?4??0r它与试探点电荷无关,给定Q,它仅是空间点函数,因而是一个矢量场——静电场。
3.场的叠加原理(实验定律)
n个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量
1
杨海 电动力学 第一章 电磁现象的普遍规律 1-2
?nn???Qiri??Ei。 和,即:E(x)??3i?14??0rii?14.电荷密度分布
?QdQ ??V?0?V??dV?QdQ?面密度: ??x???lim ??S?0?S?dS??QdQ?线密度 : ??x???lim ??l?0?l?dl?体密度: ??x???lim?dQ???x??dV????Q????x??dV?,Q????x??dS?,Q????x??dl?
VSL
5.连续分布电荷激发的电场强度
??????????x??r??x??rE(x)??dV?或E(x)??dS? 33V4??S4??0r0r??????x??rdl? 或 E(x)??3L4??0r??对于场中的一个点电荷,受力F?Q?E仍然成立。
???若已知??x??,原则上可求出E?x?,若积分不可,可近似求解或数值积
分。但是在许多实际情况,不总是已知的,例如,空间存在导体线介质,导体上会出现感应电荷分布,介质中会出现束缚电荷分布,这些电荷分布一般
????是不知道或不可测的,它们产生一个附加场E?,总场E总=E?E?,因此要
确定空间电场在许多情况下,不能用上式,而需用其他方法。
二、 高斯定理与静电场的散度方程
1. 高斯定理
??S??Q?E?dS? Q????x??dV?
?0V ⑴ 静电场对任一闭合曲面的通量等于面内电荷与真空介电常数比值。 ⑵ 它适用求解某种具有对称性的场强。
2
杨海 电动力学 第一章 电磁现象的普遍规律 1-3
⑶ 它反映了电荷分布与电场强度在某给定区域内的关系,不反应场点与点的关系。
⑷ 电场是有源场,源心为电荷。
证明
? E?14??0???x???r3?VrdV?
??r??1?????E?dS??xdS?dV ???3??S?????VS4??0?r???r1r?????????x????3dV?dV(??x?x??? ???3)
V4??0?V??r4?r??1 ???????x?4??x?x??dV?dV? ?????VV?4??0?11 ??0?V??x??????x?x??dV?dV????V???Q??0
??Q??? (a) x?在V内(V?在V内) ???x?x??dV?1, ??SE?dS??0 V????? (b) x?不在V内(V?在V内) ???x?x??dV?0, ??E?dS?0
VS (a) V与V?相交,设V内电荷Q,
?V??x?x??dV?1,
1?????S??1E?dS??0?V1??x??????x?x??dV?dV????V?????0?V2??x??????x?x??dV?dV? ??V????1?0?V1??x??dV????1?0Q
2. 静电场的散度方程。
??S???1E?dS????EdV?V?0?V??x??dV
? 3
杨海 电动力学 第一章 电磁现象的普遍规律 1-4
?? 由于它对任意V均成立,所以被积函数应相等,即有??E?。
?0⑴ 它又称为静电场高斯定理的微分形式。
⑵ 它说明空间某点的电场强度的散度只与该点电荷体密度有关,与其它点的?无关。(但要注意:E本身与其它点电荷仍有密切关系),
???? ??E?0,但??E?dS?0。
S⑶ 它刻划静电场在空间各点发散和会聚情况
?电力线发源于正电荷, ??E?0,? 电力线终止于负电荷, ??E?0,???0? ???0?
???0?
? 无电荷处电力线连续通过, ??E?0,⑷ 它仅适用于?连续分布的区域,在分界面上,一般?不连续不能用。
???⑸ 由于E有三个分量,仅此方程不能确定E,还要知道E的旋度方程。
三、 静电场的环路定理与旋度方程
??1. 环路定理 ??E?dl?0
L⑴ 静电场对任意闭合回路的环量为零。
⑵ 说明在L回路内无涡旋存在,静电场是不闭合的。
???1r??????x????dl? 证明(不要求) ??LE?dl?4??0?V?dV???Lr3???r??????x??dV?????3??dS?0 ??VS4??0r??12. 旋度方程 ∵
??L?????E?dl????E?dS?0 (由于L任意)∴ ??E?0
S??⑴ 它又称为环路定理的微分形式。
⑵ 它说明静电场为无旋场,电力线永不闭合。
?⑶ 在分界面上一般E不连续,旋度方程不适用,且它仅适用于静电场,变
4
杨海 电动力学 第一章 电磁现象的普遍规律 1-5
化场??E?0。
??⑷ 有三个分量方程,但只有两个独立的方程,这是因为????E?0
??四、 静电场的基本方程
??? ??E?0,??E? 微分形式
?0
??L????Q1E?dl?0, ??E?dS??S?0?0?V??x??dV? 积分形式
?物理意义:反映了电荷激发电场及电场内部联系的规律性。 物理图像:电荷是电场的源,静电场是有源无旋场。
[例]:电荷Q均匀分布于半径为a的球体内,求各点场强的散度和旋度。 [解]:它的场强由高斯定理可求出,
??QrE?4??0r3?r?a? (与点电荷在r?a处产生的场相同)
?r?a?
Q4??0a?r?3Q4??0a???r?33Q
4??0a3??QrE?4??0a3?求散度: r?a,??E?????3Q又因为在球内 ??,所以??E? 3?04?a???Qrr?a,??E???3?0?r?0?, 即??E?0。
4??0r求旋度: r?a,???E?Q4??0a???r 3 5
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库电动力学的第一章总结在线全文阅读。
相关推荐: