Gs3.3 等比数列
111.C 2.A 3. 或? 4. a?b?0,且a?0 提示:由Sn?a?2n?b得:当n?1时,
23a1?2a?b, 当n?1时,an?Sn?Sn?1?a?2n?1 由2a?b?a可得: a?b?0
5.a1?1,q?3,n?47
6.提示:⑴ 由Sn?1?4an?2,Sn?2?4an?1?2得:Sn?2?Sn?1?4an?1?4an 即an?2?4an?1?4an ?an?2?2an?1?2(an?1?2an) 又bn?an?1?2an ?bn?1?2bn,由此可得{bn}是等比数列, 其中首项b1?a2?2a1?3,公比q?2 ?通项bn?3?2n?1
bnan?1anbn3?2n?13⑵ 由cn?n可得:cn?1?cn?n?1?n?n?1?n?1?
222224 ?{cn}是首项c1?a11331?,公差d?的等差数列, ?通项cn?n? 224447. 解:(Ⅰ)由an?1?2Sn?1可得an?2Sn?1?1?n?2?,两式相减得an?1?an?2an,an?1?3an?n?2?
又a2?2S1?1?3∴a2?3a1 故?an?是首项为1,公比为3得等比数列 ∴an?3n?1 (Ⅱ)设?bn?的公比为d 由T3?15得,可得b1?b2?b3?15, 可得b2?5
故可设b1?5?d,b3?5?d 又a1?1,a2?3,a3?9 由题意可得?5?d?1??5?d?9???5?3? 解得d1?2,d2??10 ∵等差数列?bn?的各项为正, ∴d?0 ∴d?2 ∴Tn?3n?2n?n?1?2?2?n2?2n
【高考再现】 1.C 2. D 3. D 4. 2 5. ?2 6. 216
Gs3.4 数列求和
n1. n?22.提示:因为an?n(n?3)?n2?3n
∴Sn?(1?2?????n)?3?(1?2?????n)
2223. (1)2?4111?6?????2n?2?n?1 92731111?(2?4?6?????2n?2)?(???????n?1)
3927311(1?()n?1)152?2n?223???n?3n? ??(n?1)?3n?112?3221?31111?) 得: ?((2n?1)?(2n?1)22n?12n?113(2) 由
11111 ????????1?33?55?7(2n?3)?(2n?1)(2n?1)?(2n?1)11111111111111(1?)?(?)?(?)?????(?)?(?) 2323525722n?32n?122n?12n?11111111111?(1?????????????) 2335572n?32n?12n?12n?111n?(1?)? 22n?12n?1? (3) 令S?2x?4x3?6x5?????(2n?2)?x2n?3?2n?x2n?1, 则 : x2?S?2x3?4x5?????(2n?4)?x2n?3?(2n?2)x2n?1?2n?x2n?1
(1?x2)S?2x?2x3?2x5?????2x2n?3?2x2n?1?2n?x2n?1
?2(x?x3?x5?????x2n?3?x2n?1)?2n?x2n?1
x?(1?x2n)2(x?x2n?1?2n?x2n?1?2n?x2n?3)2n?1?2n?x?若x??1,则有:(1?x)S?2?
1?x21?x222x?2(2n?1)x2n?1?4n?x2n?3 ?
1?x22x?2(2n?1)x2n?1?4n?x2n?3 S?
(1?x2)2若x?1,则S?2?4?6?????2n?n(n?1)
若x??1,则S??2?4?6?????2n??(2?4?6?????2n)??n(n?1)
Gs3.5 等差数列与等比数列的综合题
1.C 2.A 3.B 4.B 5.C 6.D 7.B 8. A
?5n??29.50 10.d?5,q?6 11.4 12.2 13. 3 , Sn???5n?1??2214. ⑵⑷
15. 解:⑴ 由an?a1?(n?1)d,a10?30,a20?50,得方程组
?n为偶数
n为奇数?a1?9d?30,?a1?12 解得? ? an?2n?10
?d?2?a1?19d?50.n(n?1)n(n?1)d,Sn?242 得方程:12n??2?242, 22⑵ 由Sn?na1?解得n?11或n??22(舍去).
1?a???a1?d?21?1216. 解: ⑴ 由已知?,解得:? ? an?a1?(n?1)d?n
2?11a1?55d?33?d?1??21n2⑵ bn?()12an1?()22n)bn22n2???() ,
b222n?1()n?12( ? 数列{bn}为等比数列,首项b1?22,公比q? 22⑶ limTn?n??b1?1?q221?22?2?1
17. 解: ⑴ 设等差数列{log2(an?1)}的公差为d.
由a1?3,a3?9得2(log22?d)?log22?log28,即d=1. 所以log2(an?1)?1?(n?1)??n,即an?2n?1.
⑵ 证明: 因为
111, ?n?1?nnan?1?ana?22所以
1111111?????1?2?3???n
a2?a1a3?a2an?1?an2222111?n?2?1?1?1. 2 ?212n1?2118. 解:⑴ 由a1=1,an?1?Sn,n=1,2,3,……,得:
31111141116a2?S1?a1?, a3?S2?(a1?a2)?,a4?S3?(a1?a2?a3)?,
3333393327114由an?1?an?(Sn?Sn?1)?an(n≥2),得an?1?an(n≥2),
333?114n?21?又a2=,所以an=()(n≥2), ∴ 数列{an}的通项公式为an??14n?2333()??33⑵: 由(I)可知a2,a4,n?1n≥2;
∴ a2?a4?a6?41,a2n是首项为,公比为()2项数为n的等比数列,
3341?()2n13?3[(4)2n?1]. ?a2n=?31?(4)2733时,a1?S1?2; 当n?2时,an?Sn?Sn?1?2n2?2(n?1)2?4n?2, 19. 解:⑴ . 当n?1故{an}的通项公式为an?4n?2,即{an}是a1?2,公差d?4的等差数列. 设{bn}的通项公式为q,则b1qd?b1,d?4,?q?n?1故bn?b1q?2?1. 424n?114,即{bn}的通项公式为bn?n?1.
⑵ . ?cn?an?4n?2?(2n?1)4n?1,
2bn4n?1?Tn?c1?c2???cn?[1?3?41?5?42???(2n?1)4n?1],4Tn?[1?4?3?4?5?4???(2n?3)423n?1?(2n?1)4]n
13Tn??1?2(41?42?43???4n?1)?(2n?1)4n?[(6n?5)4n?5]3两式相减得:
1?Tn?[(6n?5)4n?5].9
11111=a+,a3=a2=a+; 44228113131⑵ ∵ a4=a3+=a+, 所以a5=a4=a+,
428241611111111所以b1=a1-=a-, b2=a3-=(a-), b3=a5-=(a-),
444244441猜想:{bn}是公比为的等比数列· 证明如下:
2111111因为bn+1=a2n+1-=a2n-=(a2n-1-)=bn, (n∈N*)
42424211所以{bn}是首项为a-, 公比为的等比数列·
421b1(1?n)2?b1?2(a?1) ⑶ lim(b1?b2??bn)?limn??n??1141?1?2220. 解:⑴ a2=a1+
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库数列的基本概念高三数学第一轮复习同步练习题 新课标 人教版(3)在线全文阅读。
相关推荐: