?M?x??1?(1?0)
lx给Mi以虚变化?Mi?1 虚应力为 ????=虚余功:?W?=?i?1
?M?x?Iy
虚余能:?V*=?(真实应变)?(虚应力)d?
?????1EI1EIM?x??M?x?yydxdydz EII??2?l0l0M?x??M?x?dx?Ay2dA
j??Mi??Mi?M?1?x/l?dx ?x/l????
Qi?1??M?Mj??i3EI?2?l
同理:给Mj以虚变化?Mj?1,??Mi?0?可得(将i换为j)
?j??Mi???Mj??3EI?2?l
3)方法三 矩阵法(柔度法) ??i??Mi???Mi?设??????,?p????,虚力??p????,?????p????
?M?Mj??j??j?? ??????M?x?Iy??Mi??Mi?MI?yy?x/l??j?Ix?1??l??x??Mi?????c??p? ?l??Mj?式中?c??y??x??x??1??,??????I??l??l??(不妨称为物理矩阵以便与刚度法中几何矩阵
?B?对应)
??Mi?? ?Mj???1虚应力??????c???p???c???1实应变?????D??????D??C??p?
虚余功 ?W*??????p????p???????i?Mi??j?MTTj?
虚余能 ?V*?????????d??????????d?
??TT
????p??C??D??C??P?d????p??TT?1T??T?1???C??D??C?d???p? ???于虚力原理:?W*??V*考虑到虚力??p?的任意性。得: ?????p???C??D???A??? p??C?d?T?1式中 ?A????C??D??C?d?——柔度矩阵(以上推导具有普遍意义)
?T?1对本题:
x??1??y??y?x??l?1??????I?x?EI??l???l???2??x???1??ll?x?1????d???l?EI0?x?x???1???l??l???A????x?x????1???l?l??dx2??x??????l??
?由
1?l/3?l/?6l???EI??l/6l/3?3EI????1?1/21?/2? ?1????A??p?展开得: ??i?l ?????j?3EI?1/?2?Mi??1???M? ?1/21???j?6.3题
方法一 单位位移法
???uj?ui?/l , ??E??E?uj?ui?/l
ui/l??1/l设 ?ui?1,则 ?????
Ti?1???l?uEj?ui???1/l?d???EAl2??u0lj?ui?dx?EAl?ui?uj?
同理,令?uj? 可得
Tj?1???l?uEj?ui??1/l?d??EAl?uj?ui?
?Ti?EA?1即:????Tlj??1???1??ui???? 可记为 1??uj??p???K????
ijij?K?为刚度矩阵。
方法二 矩阵虚位移法 设?pij????TiTj??T ??i???j?u1iu??jT
? {?}??uj?ui?1l?ui?/l???1??1???l?uj??B??????j i?式中 ?B????11?——几何矩阵
? ?????D??????D??B???ij?
设虚位移
??ij?????uiT?uj??T , 虚应变 ??????B????ij?
T外力虚功 ?W??pij?????ij?????ij???p?
ij虚应变能 ?V?????????d??????????d? ?TT????i???????B??D??BjTTij d?d??? ????i??????B??D??Bj???T?T??
ij ????i?K???j??
ij由 ?W??V 得: ?pi???K???jT?
ijd——刚度矩阵 式中 ?K????B??D???B??1??1?1EA?1对拉压杆元 ?K??EA?????11?dx??l?1?ll??1l?1?? 详细见方法一。 1?方法三 矩阵虚力法 设 ?pij??Ti??ui???? , ??ij???? , ?????D???? ?Tj??uj?Tj?TiA1A?1? ?????Ti????11?????C??pij? A?Tj?11?——物理矩阵(指联系杆端力与应力的系数矩阵)
?1 式中 ?C???
??1 ?????D??????D??C??pij? 虚应力 ??????C???pij?
??Ti??1??? , 则 ??????D??C???pij? ??Tj? 设虚力 ??pij? 虚余功 ?W*???ij?T??pij????pij??TT?1T???
ij 虚余能 ?V*?????????d??????????d?
?TT ?
p??C??????p??C??Dij?ij?d
?T???pi?C??j?????D???1?Cd??????p
ij ???pij??A??pij? 式中
A????C???C??D?T?1?d ——柔度矩阵
?1?? 1?对拉压杆: ?K???
AE?l1??1?1l?1?11dx??????A?1?AEA??1 ??i???A??pj?
ij?ui?l?1 即 ????uEAj??1???1??Ti???? 1??Tj?讨论: 比较方法二、三。
结论: ?pij???K???ij?, ??i???A??pj?
ij?1若 ?K?与?A?的逆矩阵存在(遗憾的是并非总是存在),则,?K?实际上是一个柔度矩阵,?A?实际上是一个刚度矩阵
6.5题
1)6.30如图所示 设vx??2n?x??a1?cos?n??
l??n?1??1
显然满足x?0,x?l处的
变形约束条件
v?0??v?l??0v?0??v?l??0''
EI?2n?x??2n??acos??n??dx ??02l???n?1?l??l?22变形能 V?EI2?l0(v)dx?''2?2n??l ? a???2n?1?l?2EI2n?4力函数 ??pv?c??pv?l?c??2pv?c?(对称) ?2p?an??1?cosn?1??2n?c??l?
EIl22n?l2n?c??4)?2p?1?cos?
l??由
??V????an?0 ,所以
?V?an????an 。即
an(所以, an?pl43pl344EI??2n?c???1?cos?l???4n
v?x??4?EI?n?11?2n?c??2n?x?1?cos1?cos??? 4?n?l??l? 2)6.40如图所示
?设v?x??a0x??ansinn?1n?xl
2?EI??n?x?EI?n???v?l???V??asindx????n????20?ll?2A2??n?1??l?22l?a0l?2?n???an?l?2?2A
??n?1?42 ??pU?c??p?ansinn?1n?cl?a0pc
由
??V????a0?0
得 a0l2/A?pc , 所以,a0?Apc/l2 由
??V????an4?0, 得
32plEIl?n??n?ca? 所以,a?psinn??n2?l?lEI?n??4sinn?cl
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库结构力学答案部分(5)在线全文阅读。
相关推荐: