??2??M22?l3EI?M2l6EI,??2?1??2M2l?l6EIK?6EIl13EIl若21杆单独作用,K21?3EI?21,若24杆单独作用,K24?6EIl?24?
?两杆同时作用,K?K21?K24?4.7.题
已知:受有对称载荷Q的对称弹性固定端单跨梁(EIl), 证明:相应固定系数?与?关
??2?EI?? l?系为:??1?1?
证:梁端转角?i??M??l??M???Q????2EI?Ml3EI?Ml6EI???Q???.............................?1??令??0则相应M?M?固端弯矩?即M???Q?l2EIMM?........................................?2?l2EI?1?12?EIl???EIl
?1??2?得????l2EI????11?2?或:???1?1?1??2??? 讨论:
1)只要载荷与支撑对称,上述结论总成立
2)当载荷与支撑不对称时,重复上述推导可得
?i??2?ij?1??ij?ijor2?ij?ij?1?3?i??1j?i?6?1??j???i13?13式中?ij?MiM??外荷不对称系数 ?ij??i?j??支撑不对称系数仅当?ij??ij?1即外荷与支撑都对称时有?i?11?2?i否则会出现同一个固定程度为?i的梁端会由载荷不对称或支撑不对称而影响该端的柔度?i,这与?i对梁端的约束一定时为唯一的前提矛盾,所以适合?i??Mi定义的?i~?i普遍关系式是不存在的。
4.8 题
4.8 题
A1??2l?348EI?l36EI列出1节点的角变形连续方程:2?Mlvp2l??M(2l)v11?1????1??3EIl3EI2l16EI? ?v?AR?A??M1?2p???M1?p??
111???????12????2l??l?联立解出M1??311pl,v1?23pl336EI画弯矩图见右图4.9题
1)如图所示刚架提供的
支撑柔度为A1?A2?V而由5节点?5?0得p?1 ??pl?l3E?7I?6E?7I?M5l???pl???pl2?l?0
?M5?pl2,F???3p2 由卡瓦定理:
A?V1?p??1?EIM?M?Pdsp?1l??l3p??3??pssds?pl?sl?sds1????2?2????1?10E?7I??022?????1p?2
1?l3???E?7I???312333?3?1?ll?l?l?s2?ds2???????0?2?4?12EI???7EI?3l1节点列出方程组求解 2)由对称性只需对0,
3?M0lM1lv1ql????0??3EI6EIl24EI?33?M0lM1lv1M1lM1lqlql ? ???????l24EI3EI6EI24EI?6EI3EI3???M1?M0ql?ql?lv?AR???111?????12EI??l2?2?? 联立解得:M0?11ql236,M1??ql236,v1?2v2?ql4
18EI第5章 位移法
5.2题
图4.40M12??Ql010,M21?Ql015,M32?M23?0
' M12?2E(4I0)l02EI0l0/24EI0l0/2?2,M4EI0l0/22EI0l0/2'21?4E(4I0)l0?2
' M23??3??2
'? M32?3??2
对于节点2,列平衡方程
M32?0?? 即: ??M?M?021?23?MM'23'32'21?M32?0?M23?M?M21?0
代入求解方程组,有
2?4EI08EI0Ql0??2??3?0??2???l0l0?22?15EI0?,解得? ?28EI08EI04EI0Ql0Ql0?(????)?2??3??3?l0l015?44?15EI0?l0?所以M12?M'12?M1228EI0??Ql0??l0?22?15EI0?Ql041???Ql0??0.1242Ql0 ?330?10M21?M'21?M21216EI0??Ql0??l0?22?15EI0?Ql0Ql0???0.0182Ql0 ?1555?
图4.50。 由对称性知道:?2???3???
1)M12??Ql010,M21?Ql015,M32?M23?0
'? 2) M122E(4I0)l0?2,M)'21?4E(4I0)l0(0I3?2
E6I0l0 M2'3?2E(3I0l0??34El0?)?2? 23) 对2节点列平衡方程M23?M21?0
即
16EI0l0?2?Ql015?6EI0l0?2?0,解得?2??Ql0222?15EI0
4)求M12,M21,M23(其余按对称求得)
M12?M'12?M1228EI0??Ql0??l0?22?15EI0?Ql041???Ql0??0.1242Ql0 ?330?10?Ql0Ql0???0.0182Ql0 ?55?15M21?M'21?M21216EI0??Ql0??l0?22?15EI0M23??M21,其余M43??M21,M34??M21,M32??M23
5.3题
由对称性只要考虑一半,如左半边 1)固端力(查附表A-4)
M12??Q(2l0)10??15q0l02, M21?Q(2l0)1?5215ql02 0M25?M23?M32?M34?0
2)转角?2,?3对应弯矩(根据公式5-5)
M12?'2E(4I0)2l04EI04l04EI0l02EI0l04EI04l0?2,M21?'4E(4I0)2l0EI02l0?2,
M25?'?2?2EI04l02EI0l04EI0l02EI04l0?5?5???2??2
M23?'?2??3,
M32?'?2??3
EI02l0M34?'?3??4?4???3??3
图5.1 (单位:q0l02) M'25'32'233)对于节点2,3列出平衡方程
?M32?M34?0?? 即??M?M21?M25?M23?0???M?M'34'21??(M32?M34)???M23?M21?M25??M
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库结构力学答案部分(3)在线全文阅读。
相关推荐: