32EI04EI0EI0??12q0l0??2??3??3?0??2??l0l02l01045EI0??则有?,得 ?23q0l016?8EI0??EI0??4EI0??2EI0???2q0l0???2223?l?33?1045EI2lll15000?00?4)
M12?M'12?M1234EI0??12q0l0?1257222??(?ql)??q0l0??0.246q0l0 ??00l0?1045EI0?51045M2138EI0??12q0l0?226222??ql?q0l0?0.0415q0l0 ??00l0?1045EI0?156273EI0??12q0l0?622???q0l0??0.0057q0l0 ??2l0?1045EI0?104534EI0??12q0l0?2EI0????l0?1045EI0?l032EI0??12q0l0?4EI0????l0?1045EI0?l03?16q0l0?11222??ql??0.0357ql??00003135?3?1045EI0?3?16q0l0?822??q0l0??0.0026q0l0 ??3135?3?1045EI0?M25M23
M32其余由对称性可知(各差一负号):M65??M12,M56??M21,M52??M25,
M54??M23,M45??M32,M43??M34?M32;弯矩图如图5.1
5.4 题
(M14?M25?0)M12??pl8,M21?pl8,其余固端弯矩都为0
'? M412EIll?1,M14?''4EIll?1,M52?'2EIl?2,M25?'4EIl?2
M63?M12?M'23''2EI4EIl4EIl?3,M36??1?2EIl2EIl4EI?3
'?2, M21?2EIl2EIl?1??2?4EI??2??3, M32?'l4EIl?2 ?3
由1、2、3节点的平衡条件
?M14?M12?0?????M21?M25?M23?0 即?M??M32?M36?0???M14?M12???M14?M12?'''25?M'23'?M'21'???M23?M21?M25?
M32?M36???M32?M36?4EI2EI?4EI?????2?11?lll?4EI4EI?2EI?????2??12ll?l4EI4EI?2EI?????3?23?ll?lpl84EIl02EIlpl8?2??3??
解得:?1?27pl222?64EI,?2??5pl222?16EI,?3?5pl222?64EI
M14??M1224EI?27pl?27??pl?0.0767pl ??l?22?64EI?352M4122EI?27pl?27??pl?0.0383pl ??l?22?64EI?70424EI?5pl?5??pl?0.0142pl??M32 ??l?22?64EI?35222EI?5pl?5??pl?0.007pl ??l?22?64EI?70424EI?5pl?5????pl??0.0568pl ??l?22?16EI?88224EI?5pl?2EI?5pl?35?????pl??0.0497pl ????l?22?16EI?l?22?64EI?704M36M63M25M23M21??M25?M23?75704pl?0.1065pl
M5222EI?5pl?5????pl??0.0284pl ??l?22?16EI?176弯矩图如图5.2
5.5题
图5.2(单位:ql) 已知l12?l0?3m,l23?2.2l0?6.6m,l24?3l0?9m I0?0.3?104cm4,I12?2I0,I23?3I0,I24?8I0 Q0?12q2l12?12q0l0,q4?4q0,
12(3q0)3l0?6Q0?9Q03l0)? Q24?Q矩24?Q三角24?q(0
1)求固端弯矩
M21?Q0l010,M12??Q0l015,M32?M23?0
?(6Q0)(3l0)12??33Q0l010 M24??
M42(9Q0)(3l0)15
?(9Q0)(3l0)10?(6Q)(3l)0012?21Q0l05
2)转角弯矩
M'12?4E(2I0)l0?1?2E?2I0?l0?2,
M21?'2E(2I0)l0?1?4E?2I0?l0?2
' M23?4E(3I0)2?(2l0)?2?2E(3I0)2?(2l0)?3,
M32?'2E(3I0)2?(2l0)4E(8I0)(3l0)?2?4E(3I0)2?(2l0)?3
' M24??2,
M42?'2E(8I0)(3l0)?2
图5.3(单位:Q0l0) 3)对1、2、3节点列平衡方程
8EI04EI0????2?Q0l0151?l0l0??796EI030EI0?4EI0?16??0即:??1??2??3????Q0l0?33l011l0?5??l0?30EI060EI0???3?0?211l011l0??2M12?0?? ?M21?M24?M23?M32?0?
解得:?1??2234Q0l032880EI02??0.03397q0l02EI0,?2?209Q0l01370EI02?0.07628q0l02EI0,
?3??209Q0l02740EI0??0.03814q0l02EI0
4)求出节点弯矩 M21?????4?223432880?8?2091370?1??Q0l0?1.0487Q0l0 10?2096209??12M23??????Q0l0?0.6241Q0l01.213702.22740??33??32209M24?????Q0l0??1.6727Q0l0?3137010?21??14209M24?????Q0l0?5.0136Q0l0313705??
第6章 能量法
6.2题
1)方法一 虚位移法
考虑b),c)所示单位载荷平衡系统, 分别给予a)示的虚变形 :
M(x)EIdx??d?
外力虚功为 ?W??虚应变能为
?V=?1??i?? ?1??j??M(x)MEI01l0(x)dx
?1?? =?EI?1??EI?0?Ril0ilx?Mi??0R?x1?idx
??Rx?M??Rx?dx0ii
?l???EI??=??l??EI???Mi3Mj3?Mj?l?1??M?M..........b)?j??i6?3EI?2?Mi?l?1?M?M...........c)??i??j6?3EI?2?
?由虚功原理:?W=?V 得:
?1??i?l? ?????3EIj??1????2?1?2??Mi???? Mj?1????2)方法二 虚力法(单位虚力法) ? 梁弯曲应力:???=M?x?Iy
??=?E=M?x?EIy
Mx??Mi??Mi?Mlj?x
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库结构力学答案部分(4)在线全文阅读。
相关推荐: