4.11 先求输入端须传输的信息量
1111H(X)?14000?log?14000?log2p?0?2p?1? ?14000?bit?再求输出端10s内传出的信息量。要求信道传出的信息量,必须先求信道容量。由
?1PX???21? 2???0.98P?Y|X?0.02?0.?02 ?90.?8知
?1?2???0???0??0.980.02??0.490.01??????1??0.020.98???0.010.49?
2???11?PY????22?PXY所以
H?X??log2?1?bit?H?Y??log2?1?bit?H?Y|X?????p?xiyj?logp?yj|xi?XY??0.49?log0.98?0.01?log0.02?0.14?bit?C?maxI?X;Y??H?Y??H?Y|X?p?x?
?1?0.14?0.86?bit?信道容量为0.86bit,对信道而言10s内共传输的符号数为15000个。所以输出端传出的信息量为0.86?15000?12900bit?14000bit,显然10s内传出端无法得到输入序列的全部信息。 4.12 (1)信道为准对称信道,输入等概率分布时达到信道容量,即C1?I?X;Y?。 设输入为
p?a1??p?a2??计算输出得
1 2p?b1??p?b2??所以
1?1?2??,p?b3??? 2C1?I?X;Y??H?Y??H?YX??1?2??2H??2? ??H?2???H?p????H?p????H?2????2???1?2??log????p???log?p?????p???log?p????1?2??
(2)信道仍为准对称信道,输入等概率分布时达到信道容量,即C2?I?X;Y?。 设输入为
p?a1??p?a2??计算输出得
1 2p?b1??p?b2??所以
1?1?2??,p?b3??p?b4??? 2C2?I?X;Y??H?Y??H?YX??1?2??2H??2? ??2H????H?p????H?p????H?2????2???1?2??log????p???log?p?????p???log?p????2?log2??1?2??比较两信道容量,得
C2?C1?2?log2??C1?2?
4.13 依题意,阻值的概率空间为
R?2k?R?5k??X??x1x2??P???0.70.3? ????功率的概率空间
y2??Y??y1??P??0.640.36? ????1P?W81P?W4由题意知p?y1x1??0.8,p?y2x1??0.2,再设p?y2x1??p,则
PY??0.640.36??p?y1x1?p?y2x1???? ??p?x1?p?x2????pyxpyx?????1222????0.80.2???0.70.3?????0.56?0.3p0.14?0.3p?pp??由0.56?0.3p?0.64,得
p?PYX0.84?315?0.80.2? ??411????1515???又
H?Y??H?0.64,0.36??0.943(bit) ?411?H?YX??0.7?H?0.8,0.2??0.3?H?,??0.756(bit)?1515?所以
I?X;Y??H?Y??H?YX??0.943?0.756?0.187(bit)
通过测阻值可以得到关于瓦数的平均信息量为0.187bit。
?0?0???1??2??0001?001???与信道的传输符号的概率分布100?2?010????01???1???0???0??1??80????0?1? 2??4.14 (1)X?c1?Y,由信道传输矩阵PYX得到信道输入与输出的联合分布矩阵为
?1?4??0?PXY???0???0?0140000140?0???0?0??0???10??2???01???4??1P?Y?8?00180000140000102011?4??1?4?? 0???0??有边缘概率
1814输出符号熵为
H?Y????p?yj?logp?yj?Y11111111??log?log?log?log?1.75(bit)88884422条件熵为
H?YX?????p?xiyj?logp?yjxi?XY1111111??log1?log1?log?log?log1?0.25(bit)4482824
I?X;Y??H?Y??H?YX??1.75?0.25?1.5(bit)
(2)X?c1?Y?c2?Z
?0?0???1??2?0?0012001??0?001?????100????210????00012001??0?001??????000????110????20001210?10??01?
?00???PZX?PYXPZY
?1?4??0?PXZ???0???0?0140000140?0???0?0??0???10??2???01???4??1PZ???8010110200??00???0???0???1??0??0???1??81? 4??00018141400?0??0??? 1?4??0??1812H?Z????p?zl?logp?zl?Z11111111??log?log?log?log?1.75(bit)88882244H?ZX?????p?xizl?logp?zlxi?XZ
1111??log?log?0.25(bit)8282
I?X;Z??H?Z??H?ZX??1.75?0.25?1.5(bit)
显然I?X;Y??I?X;Z?。
4.15 (1)由信道1的转移概率矩阵可知其为对称信道
所以
?11?C1?log4?H?,??1
?22?因为
H?X??log4?2?C1
所以有信息熵损失,信道有噪声。
(2)由信道2的转移概率矩阵可知其为准对称信道,输入为等概分布时达到信道容量。令此时的输出分布为
q1?q2?所以
1?q8?
8C2?H?Y??H?Y|X??11??log8?H?,??22??2因为
H?X??log4?C2
所以信道2无噪声。
4.16 因为是二元对称信道,根据信源概率分布:p?a1??p?a2??1/2,
信道传输概率: p?b1|a1??p?b2|a2??1??,p?b1|a2??p?b2|a1??? 得到输出符号概率分布
p?b1??p?b2??根据互信息量的定义,有
I?a1;b1??I?b1;a1??logI?a1;b2??I?b2;a1??logp?b1|a1?p?b1?p?b2?1 21???log??2?1?????1/2?logp?b2|a1??log?1/2
?log?2??4.17 (1)这是一个错误传递概率为0.08的二元对称信道,它的信道容量为
C?1?0.08log(2)每次顾客点菜时提供的信息为
11?0.92log?0.5978比特 0.080.9211?0.9log?0.469比特 0.10.9(3)由于需要传递的信息量小于信道容量,因此在这个信道上可以正确传递顾客点菜的信息。
H(X)?0.1log第5章 连续信源和连续信道
5.1 略
1??x?1??x??eln??e?dx??2?2??1?1?????e??x?ln?ln???x?dx??2?2?5.2 1??ln?ln??122e?ln奈特H?X??????5.3 略 5.4 略
第6章 无失真信源编码
6.1 1
6.2 信源序列
6.3 (1)唯一可译码有:A,B,C。 (2)即时码有:A,C
(3)LA??1/2?1/4?1/16?1/16?1/16?1/16??3?(码元 3/信息符号)
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库信息论与编码理论-习题答案_姜楠_王健_编著_清华大学(5)在线全文阅读。
相关推荐: