1. 某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示: 起运时间 服务员数 2—6 4 6—10 8 10一14 10 14—18 7 18—22 12 22—2 4 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?
一、填空题
1.线性规划的代数解法主要利用了代数消去法的原理,实现基可行解的转换,寻找最优解。
-1-1
2.标准形线性规划典式的目标函数的矩阵形式是_ maxZ=CBBb+(CN-CBBN)XN 。 3.对于目标函数极大值型的线性规划问题,用单纯型法求解 时,当基变量检验数δj_≤_0时,当前解为最优解。
4.用大M法求目标函数为极大值的线性规划问题时,引入的人工变量在目标函数中的系数应为-M。
5.在单纯形迭代中,可以根据最终_表中人工变量不为零判断线性规划问题无解。 6.在线性规划典式中,所有基变量的目标系数为0。
7.当线性规划问题的系数矩阵中不存在现成的可行基时,一般可以加入人工变量构造可行基。
8.在单纯形迭代中,选出基变量时应遵循最小比值θ法则。
9.线性规划典式的特点是基为单位矩阵,基变量的目标函数系数为0。
10.对于目标函数求极大值线性规划问题在非基变量的检验数全部δj≤O、问题无界时,问
题无解时情况下,单纯形迭代应停止。
11.在单纯形迭代过程中,若有某个δk>0对应的非基变量xk的系数列向量Pk_≤0_时,则此问题是无界的。
12.在线性规划问题的典式中,基变量的系数列向量为单位列向量_
13.对于求极小值而言,人工变量在目标函数中的系数应取-1 14.(单纯形法解基的形成来源共有三 种 15.在大M法中,M表示充分大正数。 二、单选题
1.线性规划问题C
2.在单纯形迭代中,出基变量在紧接着的下一次迭代中B立即进入基底。 A.会 B.不会 C.有可能 D.不一定
3.在单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中B。
A.不影响解的可行性B.至少有一个基变量的值为负C.找不到出基变量D.找不到进基变量
4.用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部<0,则说明本问题B 。
A.有惟一最优解 B.有多重最优解 C.无界 D.无解
5.线性规划问题maxZ=CX,AX=b,X≥0中,选定基B,变量Xk的系数列向量为Pk,则在关于基B的典式中,Xk的系数列向量为_ D
T-1
A.BPK B.BPK C.PKB D.BPK 6.下列说法错误的是B
A. 图解法与单纯形法从几何理解上是一致的 B.在单纯形迭代中,进基变
量可以任选
C.在单纯形迭代中,出基变量必须按最小比值法则选取 D.人工变量离开基底后,不会再进基
7.单纯形法当中,入基变量的确定应选择检验数 C
A绝对值最大 B绝对值最小 C 正值最大 D 负值最小 8.在单纯形表的终表中,若若非基变量的检验数有0,那么最优解 A
A 不存在 B 唯一 C 无穷多 D 无穷大
9.若在单纯形法迭代中,有两个Q值相等,当分别取这两个不同的变量为入基变量时,获得的结果将是 C
A 先优后劣 B 先劣后优 C 相同 D 会随目标函数而改变 10.若某个约束方程中含有系数列向量为单位向量的变量,则该约束方程不必再引入 C A 松弛变量 B 剩余变量 C 人工变量 D 自由变量 11.在线性规划问题的典式中,基变量的系数列向量为 D
A 单位阵 B非单位阵 C单位行向量 D单位列向量 12.在约束方程中引入人工变量的目的是 D
A 体现变量的多样性 B 变不等式为等式 C 使目标函数为最优 D 形成一个单位阵 13.出基变量的含义是 D A 该变量取值不变 B该变量取值增大 C 由0值上升为某值 D由某值下降为0 14.在我们所使用的教材中对单纯形目标函数的讨论都是针对 B 情况而言的。 A min B max C min + max D min ,max任选
15.求目标函数为极大的线性规划问题时,若全部非基变量的检验数≤O,且基变量中有人工变量时该问题有 B
A无界解 B无可行解 C 唯一最优解 D无穷多最优解 三、多选题
1. 对取值无约束的变量xj。通常令xj=xj’- x”j,其中xj’≥0,xj”≥0,在用单纯形
法求得的最优解中,可能出现的是ABC
2.线性规划问题maxZ=x1+CX2
其中4≤c≤6,一1≤a≤3,10≤b≤12,则当_ BC时,该问题的最优目标
函数值分别达到上界或下界。
A.c=6 a=-1 b=10 B.c=6 a=-1 b=12 C.c=4 a=3 b=12 D.c=4 a=3 b=12 E.c=6 a=3 b=12
3.设X,X是用单纯形法求得的某一线性规划问题的最优解,则说明ACDE。
A.此问题有无穷多最优解 B.该问题是退化问题 C.此问题的全部最优解可表
(1)(2)(1)(2)(1)(2)
示为λX+(1一λ)X,其中0≤λ≤1 D.X,X是两个基可行解E.X,X的基变量个数相同
4.某线性规划问题,含有n个变量,m个约束方程,(m M A.该问题的典式不超过CN个B.基可行解中的基变量的个数为m个C.该问题一定存在可 M 行解D.该问题的基至多有CN=1个E.该问题有111个基可行解 5.单纯形法中,在进行换基运算时,应ACDE。A.先选取进基变量,再选取出基变量B.先选出基变量,再选进基变量C.进基变量的系数列向量应化为单位向量 D.旋转变换时采用的矩阵的初等行变换E.出基变量的选取是根据最小比值法则 6.从一张单纯形表中可以看出的内容有ABCE。A.一个基可行解B.当前解是否为最优解C.线性规划问题是否出现退化D.线性规划问题的最优解E.线性规划问题是否无界 7.单纯形表迭代停止的条件为( AB ) A 所有δj均小于等于0 B 所有δj均小于等于0且有aik≤0 C 所有aik>0 D 所有bi≤0 8.下列解中可能成为最优解的有( ABCDE ) A 基可行解 B 迭代一次的改进解 C迭代两次的改进解 D迭代三次的改进解 E 所有检验数均小于等于0且解中无人工变量 9、若某线性规划问题有无穷多最优解,应满足的条件有( BCE ) A Pk<Pk0 B非基变量检验数为零 C基变量中没有人工变量 Dδj<O E所有δj≤0 10.下列解中可能成为最优解的有( ABCDE ) A基可行解 B迭代一次的改进解 C迭代两次的改进解 D迭代三次的改进解E所有检验数均小于等于0且解中无人工变量 四、名词、简答 1、人造初始可行基:当我们无法从一个标准的线性规划问题中找到一个m阶单位矩阵时,通常在约束方程中引入人工变量,而在系数矩阵中凑成一个m阶单位矩阵,进而形成的一个初始可行基称为人造初始可行基。 2、单纯形法解题的基本思路? 可行域的一个基本可行解开始,转移到另一个基本可行解,并且使目标函数值逐步得到改善,直到最后球场最优解或判定原问题无解。 五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当 于图解法可行域中的哪一个顶点。 (1)(2) 六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。 八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10 X3 Xl —10 2 a Xl b C d X2 -1 O e X3 f 1 0 X4 g 1/5 1 (1)求表中a~g的值 (2)表中给出的解是否为最优解? (1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解 一、填空题 1.线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最 小值/极小值的线性规划问题与之对应,反之亦然。 2.在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系数。 3.如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。 4.对偶问题的对偶问题是原问题_。 5.若原问题可行,但目标函数无界,则对偶问题不可行。 6.若某种资源的影子价格等于k。在其他条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3个单位时。相应的目标函数值将增加3k 。 ﹡ 7.线性规划问题的最优基为B,基变量的目标系数为CB,则其对偶问题的最优解Y= CBB-1 。 ﹡﹡﹡﹡ 8.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX= Yb。 9.若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX≤Yb。 ﹡﹡﹡ 10.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX=Y*b。 11.设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为min=Yb YA≥c Y≥0_。 12.影子价格实际上是与原问题各约束条件相联系的对偶变量的数量表现。 13.线性规划的原问题的约束条件系数矩阵为A,则其对偶问题的约束条件系数矩阵为AT 。 14.在对偶单纯形法迭代中,若某bi<0,且所有的aij≥0(j=1,2,?n),则原问题_无解。 二、单选题 1.线性规划原问题的目标函数为求极小值型,若其某个变量小于等于0,则其对偶问题约束条件为A形式。 A.“≥” B.“≤” C,“>” D.“=” 百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库《运筹学》考试及参考答案(2)在线全文阅读。
相关推荐: